NSIP

Resources

Title
From canopy to seed: Loss of snow drives directional changes in forest composition
Author(s)
Bisbing, Sarah M.;Buma, Brian J.;Oakes, Lauren E.;Krapek, John;Bidlack, Allison L.
Published
2019
Publisher
Ecology and Evolution
Published Version DOI
https://doi.org/10.1002/ece3.5383
Abstract
Climate change is altering the conditions for tree recruitment, growth, and survival, and impacting forest community composition. Across southeast Alaska, USA, and British Columbia, Canada, Callitropsis nootkatensis (Alaska yellow-cedar) is experiencing extensive climate change-induced canopy mortality due to fine-root death during soil freezing events following warmer winters and the loss of insulating snowpack. Here, we examine the effects of ongoing, climate-driven canopy mortality on forest community composition and identify potential shifts in stand trajectories due to the loss of a single canopy species. We sampled canopy and regenerating forest communities across the extent of C. nootkatensis decline in southeast Alaska to quantify the effects of climate, community, and stand-level drivers on C. nootkatensis canopy mortality and regeneration as well as postdecline regenerating community composition. Across the plot network, C. nootkatensis exhibited significantly higher mortality than co-occurring conifers across all size classes and locations. Regenerating community composition was highly variable but closely related to the severity of C. nootkatensis mortality. Callitropsis nootkatensis canopy mortality was correlated with winter temperatures and precipitation as well as local soil drainage, with regenerating community composition and C. nootkatensis regeneration abundances best explained by available seed source. In areas of high C. nootkatensis mortality, C. nootkatensis regeneration was low and replaced by Tsuga. Our study suggests that climate-induced forest mortality is driving alternate successional pathways in forests where C. nootkatensis was once a major component. These pathways are likely to lead to long-term shifts in forest community composition and stand dynamics. Our analysis fills a critical knowledge gap on forest ecosystem response and rearrangement following the climate-driven decline of a single species, providing new insight into stand dynamics in a changing climate. As tree species across the globe are increasingly stressed by climate change-induced alteration of suitable habitat, identifying the autecological factors contributing to successful regeneration, or lack thereof, will provide key insight into forest resilience and persistence on the landscape.
Keywords
Callitropsis nootkatensis;climate change;community composition;diversity;forest mortality;yellow-cedar decline

Access Full Text

A full-text copy of this article may be available. Please email the WCS Library to request.




Back

PUB24801