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Abstract. Firebrand travel and ignition of spot fires is a major concern in the Wild-
land-Urban Interface and in wildfire operations overall. Firebrands allow for the effi-

cient breaching across fuel-free barriers such as roads, rivers and constructed fuel
breaks. Existing observation-based knowledge on medium-distance firebrand travel is
often based on single tree experiments that do not replicate the intensity and convec-

tive updraft of a continuous crown fire. Recent advances in acoustic analysis, specifi-
cally pattern detection, has enabled the quantification of the rate at which firebrands
are observed in the audio recordings of in-fire cameras housed within fire-proof steel

boxes that have been deployed on experimental fires. The audio pattern being detec-
ted is the sound created by a flying firebrand hitting the steel box of the camera. This
technique allows for the number of firebrands per second to be quantified and can be
related to the fire’s location at that same time interval (using a detailed rate of spread

reconstruction) in order to determine the firebrand travel distance. A proof of con-
cept is given for an experimental crown fire that shows the viability of this technique.
When related to the fire’s location, key areas of medium-distance spotting are

observed that correspond to regions of peak fire intensity. Trends on the number of
firebrands landing per square metre as the fire approaches are readily quantified
using low-cost instrumentation.
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1. Introduction

Firebrands have been recognized as the primary vector for wildfire home ignition
over direct flame contact [1] due to the ability of firebrands to reach fine fuels
(e.g. leaf debris on a roof) not otherwise exposed to radiative heating from flames.
In wildfire spread, spot fires due to firebrand travel and ignition ahead of the
main fire front have been recorded at distances upwards of 4 km [2]. In fire envi-
ronments with numerous fuel-free areas (i.e. rocky outcrops in mountains or lakes
in northern circumboreal forest), firebrands offer an efficient vector for spread in
discontinuous fuels. For suppression operations, an understanding of the expected
rate of firebrand breaching across roadways or constructed mechanical fire guard
(i.e. mechanically cleared swaths) is important for forecasting crew resource
demand to extinguish small spot fires from firebrand travel across linear features.

Four distinct physical processes relevant to firebrands were defined by Koo
et al. [3]: firebrand generation, transport, deposition and ignition, followed by sur-
face fire spread. The initiation of surface fire spread in forest fuels is a generally
well-understood phenomenon, stemming from extensive field testing of simple
empirical models of point ignition and sustained flaming [4]. Firebrand transport
has been the subject of laboratory and numerical studies for decades [5], resulting
in a series of increasingly applied [6, 7] and complex [3] firebrand transport mod-
els to suit a variety of user needs. Of the key firebrand processes, the generation
of firebrands was highlighted as a key uncertainty in a recent review by [8]. Specif-
ically, the need for additional methodologies to observe firebrand generation
under realistic heat release rate and fuel conditions was cited as a key gap in the
understanding of firebrands.

Most observational studies of firebrand production and transport are from sta-
tionary fires, such as structure fires ([9–13]) which are often used to inform models
of fire spread within urban areas under high winds [14] where firebrands are an
important vector for structure-to-structure ignition, above and beyond the classi-
cal radiant and convective heat transfer from flames [10]. Stationary experimental
fires, while an important source of information on firebrand production and trans-
port, do not fully replicate the environmental conditions of a free-burning crown
fire in conifer forest, where the rapid consumption of primarily fine canopy fuels
(fine brachwood and foliage) alongside surface litter [15] provide a contrasting fuel
composition compared to more thermally thick building materials [9, 12]. Further-
more, the interaction of a wind-driven elongated fire front with the atmosphere
introduces complexities for fire spread [16] that may have implications for fire-
brand transport compared to point-source stationary fires. Similarly, laboratory
methods of firebrand production provide extremely valuable insights on structure
ignition processes, but the impact of mitigation measures such as forest fuel reduc-
tion on firebrand production and transport in conifer crown fires remain largely
limited to physics-based modelling [17].

Recent experiments to measure firebrand production in a wind tunnel setting
[20] do not capture the turbulent convection of a high-intensity crown fire where
firebrand transport is greatest and most important to landscape-scale fire spread
[21]. Firebrand production factors are essential input for fire physics models that
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can simulate the turbulence around firebrands (i.e. [3]). Data is typically challeng-
ing to acquire at the head of crown fires when utilizing incidental materials [22] or
purpose-built water collection pans [23]. Similarly, studies utilizing aerial infrared
imagery of active fires to identify spot fires ahead of the main fire front [2, 24]
quantify only those firebrands able to immediately ignite and accelerate to a new
sizable fire, but may not capture firebrands with lesser energy that may be impor-
tant in structure ignitions [25] or new ignitions on the forest floor. 3D particle
tracking velocimetry had been shown as a powerful instrument to track firebrand
count and other relevant metrics [26], but multiple deployments of such instru-
ments would be challenging ahead of and within a crown fire. Simple and robust
instrumentation for experimental crown fires is necessary for further data collec-
tion of firebrand production and transport processes in addition to the established
and valuable methods above.

In-fire cameras have been used since the 1990s [27] alongside other instrumenta-
tion such as thermocouples to examine fire behaviour during the passage of high-
intensity boreal crown fires [28] in large experimental conifer crown fires, each
multiple hectares in size. Such large experimental fires mimic the realistic fuel,
weather, and heat release rate conditions of wildfires, but also benefit from the
pre-placement of instrumentation. Though expensive to conduct and infrequently
achieved, these large experimental fires provide a partial solution to the tension
between laboratory and incident (real world) studies as highlighted in [8].

During experimental fires such as [28], cameras are typically contained within
insulated steel boxes and placed on tripods 1.0–1.5 m above the ground, facing
the direction of fire spread. While the audio track has been recorded and archived
as incidental information, the information contained in the audio such as the
sound of firebrands impacting the camera box has not previously been quantified.
Acoustic impulsive events, the autogenic production of sound from the combus-
tion process itself, has been documented in laboratory ignitions of conifer seed-
lings [29], though for microphones placed approximately 0.25 m from a low-
intensity flame. In contrast, firebrands that drive medium-distance structure igni-
tion, spot fire production, and enhancing fire spread travel on the order of 30 m
[22] to upwards of a kilometre [24]. In this study, we demonstrate the novel appli-
cation of in-fire camera sound recordings paired with detailed rate of spread infor-
mation to yield time and distance information of firebrand landing rates during an
experimental boreal crown fire. Importantly, while this method may have some
drawbacks compared to firebrand-specific collection instruments, the methodology
presented here requires no new instrumentation, and is compatible with archival
in-fire footage during high-intensity crown fire.

Recent advances in acoustic pattern recognition in the field of bioacoustics and
soundscape ecology have greatly increased our ability to automate the identifica-
tion of target signals or patterns in large volumes of data [30]. Automated recog-
nition has successfully been used to identify a wide range of taxa in a variety of
environments, including but not limited to birds [31], mammals [32], and amphib-
ians [33] using a variety of methods such as spectrogram cross-correlation and
analysis [34], machine learning [35], and classification of acoustic indices ([36, 37]).
While these recognition approaches have typically been used to identify acousti-



cally active animals, the same approaches can be applied to acoustically distinct
abiotic sounds [38]. Automated pattern recognition is becoming increasingly user-
friendly with a variety of software packages and programs available across several
analysis platforms [30].

This study aims utilize a previously documented experimental crown fire [39] as
a proof of concept for the combination of fire behaviour observations and the cre-
ation of a firebrand impact time series with an event-based bioacoustic recognition
algorithm. The time series of firebrand impact is then related to observed fire loca-
tion to reconstruct firebrand source areas, travel distances, and the relationship to
observed fire behaviour.

2. Methods

2.1. Experimental Fire Description

The acoustic analysis conducted in this study is based on the experimental boreal
crown fire from May 2019 in Alberta, Canada, as documented in [39]. A 3.5 ha
fire was ignited via heli-torch (in a natural stand of dense black spruce (4.5 m
tall., 12,000 stems ha-1) with an 72% feathermoss (primarily Pleurozium schreberi)
surface cover. The first 50 m of the stand in the direction of fire spread was
untreated, with a thinning reduction to 2,300 stems ha-1 implemented the remain-
der of the stand 50 m beyond the ignition line (Fig. 1). The equilibrium rate of
spread of approximately 50 m min-1 consumed 1.5 kg m2 of fine fuel in the flam-
ing phase, producing on the order of 6,900 MW of combustion energy over a
flaming front 300 m wide and approximately 35 m deep. Of 11 cameras deployed,
9 were placed in the thinned area, within 20–70 m of the control. One camera
(Camera 24) was located in an open area of masticated (mulched) spruce fuels to
the NW, and another (Camera 25) on the edge of a 10 m wide cutline that ran
southeasterly through the east thinned area. Cameras were placed strategically but
unevenly across the experimental unit to capture key areas of interest for fire
behaviour (e.g. transitions from unthinned to thinned; along cutlines etc.) rather
than systematically. Camera placement and the experimental fire overall was con-
ducted prior to the concept of this firebrand acoustic analysis, and hence the
study was not optimized for camera firebrand acoustic monitoring, but rather to
capture specifics of flaming spread and intensity, as presented in [39].

The cameras used to record video were Sony Camcorder (HDR-XR200V),
recording video at AVCHD 1440 9 1080/60i format and audio in 32-bit stereo at
48 kHz. The hard disk drive recorders register a self-noise (produced by the unit
itself) of approximately 40 dB(A) [40]. The cameras were contained in stainless
steel boxes measuring 22.86 cm wide and 30.48 cm long, and 22.86 cm tall (only
the 0.069 m2 in top area was used in calculations). The boxes were insulated with
ceramic fibreboard insulation between the steel case and the camera. Each camera
is supported by three steel legs to a height of approximately 1.2 m (Figure S1).

A full exploration of the observed fire behaviour in the experimental fire is
given in [39]. Litter moisture was between 9% (control) and 6.5% (thinned);
spruce foliar moisture was 79 ± 23%. At the time of ignition, the air temperature
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was 22.2 �C, relative humidity was 18.7%, with a mean wind speed of 12 km h-1

(gusting to 26 km h-1). Canadian Fire Weather Index values were Fine Fuel
Moisture Code 93.6, Buildup Index 69.6, and Fire Weather Index 27. In the east-
ern portion of the stand, the fire spread at 34 m min-1 through the control and
50 m min-1 in the treated area; spread rates in the western portion were
68 m min-1 in the control and 60 m min-1 in the treatment. Head fire intensity
for the continuous crown fire in the control was calculated as 43,000 kW m-1 in
the control and 41,000 kW m-1 averaged across the treatment, accounting for
both canopy and surface fuels [39]. Multiple spot fires were observed and sup-
pressed upwards of 190 m beyond the furthest extent of the thinned area. Given
that there was typically only 2–3 min between ignition and the arrival of the fire
front to the cameras, the in-fire video footage recorded few visible spot fires until
the fire front was 20–30 m distant, at which point numerous spot fires are
observed to briefly initiate before being overtaken by the main fire front
(Figure S2).

Multiple spot fires were observed between 190 and 300 m beyond the furthest
northern limit of the control portion of the experimental fire, where the receiving
area for any firebrands consists of a mixture of cured grass leafless aspen seedlings
(north of the area shown in Fig. 1). These spot fires locations were relayed by
suppression resources during the experimental fire and were not recorded by any

Figure 1. Camera locations and relative arrival time of the fire. A
detailed description and photos of the thinning treatment and control
(unthinned) areas is available in [39].



infrared or video cameras, so the exact timing of their ignitions (and the corre-
sponding source of the firebrand) is not known. Using the analytical firebrand tra-
vel distance model of [7] using a free flame height of 5 m (in the control), and
canopy-top wind speed of 20 km h-1, the modelled maximum spot fire distance is
300 m, similar to observed spot fires. A factor complicating the maximum spot-
ting distance in the case of this experimental fire is gusty conditions and wind
shear as evidenced by weak winds from the southeast at the surface interspersed
with strong gusts upwards of 26 km h-1 from the south, which may have pro-
pelled firebrands further than mean surface wind speed measurements would have
suggested. The firebrand transport distances of 10–100 m measured here did not
create appreciable spot fires ahead of the main fire front, as observed from the
camera footage, owing to the limited time for a surface fire to develop from a sin-
gle firebrand. Longer-distance firebrands transported hundreds of metres ahead of
a rapidly-moving crown fire would be sufficient to create spot fires of appreciable
size prior to the arrival of the fire front [60].

2.2. Acoustic Analysis

Time-synchronized video from eleven cameras (Fig. 1) in an experimental crown
fire in MPEG-2 Transport Stream (.m2ts) format were processed. Audio was
extracted from these files and converted into 48 kHz, 16-bit depth Waveform
Audio Files (.wav) for processing and recognition. The monitoR package [41] in R
was used for automated recognition a spectrogram cross-correlation approach.
The cross-correlation approach used is directly from the monitoR package for the
acoustic detection of bird song from automated recording units placed in forest
settings for the acoustic quantification of bird song occurrence and timing. As
such, the monitoR package is designed to handle acoustic recognition of sound
patterns using a moving-window cross-frequency correlation approach in settings
with environmental noise such as background wind. While most bird songs are
quite different and far more acoustically complex than the impact event of a fire-
brand against a steel box, bioacoustic recognition software has a 95% detection
rate for the clicking call of the Yellow Rail (Coturnicops noveboracensis) that is
quite similar to the acoustic signal of interest in this study [42]. The algorithm
works by comparison a training audio sample, and a moving window is computed
in which the training sample is compared to the audio track and a correlation
score that integrates all sound frequency ranges is computed. Sound< 1 kHz was
excluded due to helicopter rotor noise.

This training template matches well with the spectrogram of small branches and
spruce cones dropped onto the camera body in laboratory settings (Figure S3).
The training template was used to process all audio extracted from the provided
camera data, resulting in a detection history output of all acoustic signals that
resembled the training template. The first 25 instances of firebrands after ignition
were validated on each camera by manually assessing each audio recording.
Increasing cross-correlation thresholds were tested against this manually validated
dataset until the optimal accuracy of 82.5% was reached at a cross-correlation
threshold of 0.58 (i.e. only acoustic events exceeding a correlation of 0.58 with the
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training clip were used). The same correlation threshold was used in all cameras.
Detection events were recorded down to the 0.1 s interval using the software, but
the detection rate was aggregated to the 10-s interval in order to match the time
and space resolution of the fire progression map. All times are presented as sec-
onds since the start of the ignition operation. Missed detections (false negatives)
were more likely to occur when the amplitude of firebrands was lower or during
periods of high firebrand activity and overlap, which greatly decreased the correla-
tion score of that signal. As a result, automated recognition becomes unreliable
when the environment directly at the camera is burning due to high rates of fire-
brand activity.

The algorithm false positive rate was determined by running the cross-correla-
tion algorithm with the same training clip against audio collected at a subset of
cameras (7 of 11) prior to any fire ignition on the day of the experiment. This pre-
ignition detection rate using the same 0.58 threshold was used as the overall false
positive rate in the analysis. After the fire’s passage, audio recordings continued
and were analyzed using the recognizer algorithm as pre-fire audio. Logically, fire-
brand production and impact to the camera body is extremely unlikely after the
passage of the main fire front, due to the prevailing wind direction during the fire.
However, acoustic detections and sound power levels were retained from post-fire
acoustic detections in order to help distinguish firebrand impact acoustic events
from acoustic impulse events derived from the combustion process itself [29].

2.3. Firebrand Production Rate

Two approaches were used to estimate the rate of firebrand production per unit of
consumed canopy biomass (F’, firebrands kg-1 biomass). In both cases, the fire-
brand receiving area used is equal only to the top of the camera boxes, as outputs
from the firebrand physical transport model of Koo [3] applied to simulations of
the same forest type [17] showed a dominance of the vertical velocity component
upon impact to the ground surface for firebrands of intermediate distance
(� 50 m). Similarly, [19] showed that the vertical velocity component dominates
the firebrand trajectory just before impact when winds are 24 km h-1 and travel
distances are on the order of 20–50 m. Under more intense wildfire with higher
lofting heights, further travel distances, and declining terminal velocity with ther-
mal decay, this assumption no longer applies [5] In this sense, these camera boxes,
despite being 3D volumes approximately 1 m above the ground, act similarly as
2D detectors as used in [23, 43] when examining medium-distance firebrand trans-
port on the order of 10–100 m.

First, a simple method (here named ‘‘transverse uniform’’) assumes a uniform
fuel distribution between the ignition line and the camera. A consideration is
made only of the distance between the ignition line to the camera, a line that is
transverse to the ignition line. This method allows for differences in fuel load at
distance from the camera detector, but uniform fuel load within treatments with
their long-axis orthogonal to the wind direction (Fig. 1). Average plot-level mea-
surements of canopy fuel load (with distinct values in the control and treatment)
was used. No exact knowledge of the fire’s location over time is required:



F
0 ¼

R
F ðtÞdt
wintA0

ð1Þ

F(t) is the rate of firebrand detections (number of firebrands m2 receiving area
s-1) at time t, and w is the corresponding canopy fuel load (kg biomass m-2

source area). A0 (m2 source area m-2 receiving area) is the dispersion factor (the
ratio between the source area and the receiving area). At small scales (c. 1–2 m)
the value of A0 over individual unit areas may exceed unity due to the concentra-
tion of firebrands within eddies [3]. At scales of 10–100 m, firebrand dispersion
can be represented as a Gaussian dispersion transverse to the wind speed, and log-
normal dispersion parallel to the wind. Accounting for both axes (transverse and
parallel) from a point source of firebrands, [10] approximates firebrand dispersion
from a point as an ellipse with equal major and minor axes when wind speeds are
less than 5 km and a lengthening major axis (with constant minor axis) with
increasing wind speed. The change in the relative size of the firebrand landing
area relative to the low-wind scenario in [10] is analogous to A0 in the above
equation, and can be fitted to the form:

A0 ¼ 1þ 0:0005WS2 ð2Þ

Resulting in A0 values of 1.07 in this case study, but can increase to values greater
than 2.0 if wind speeds (WS) exceed 40 km h-1. The transverse uniform technique
was only applied to cameras 23, 25, 26, 32, and 42 in the Thin East area, where
the spread was relatively constant in direction from the ignition line to the cam-
eras (Fig. 1). For the cameras where there are distinct fuel loads in zones trans-
verse the direction of spread (see Fig. 1), the integrated fuel load term (wint) can
be weighted as:

wint ¼ wc
dc

dc þ dt

� �

þ wt
dt

dc þ dt

� �

ð3Þ

where fuel load is differentiated in the control (wc) and thinned (wt) stands and
the corresponding depth (m) of the control (dc) and thin treated (dt) along the axis
of spread. Note that more than two zones (in addition to control and treatment)
could used as Eq. 3 is expanded, but such geometry is less common in experimen-
tal fires.

A second technique leveraged the interpolation fire location over time (i.e. fire
arrival time raster in 10-s timesteps at 5 m resolution) grid to reconstruct the
source area of the firebrands. Assuming the local spread direction at the time of
burning in the head fire is an indicator of the firebrand travel vector, the fire loca-
tion raster was converted into a per-pixel spread direction using the terrain func-
tion in the R package raster [44]. A vector was computed at each raster cell
centre, with a bearing equal to the instantaneous fire spread direction as derived
from the slope of the time of arrival raster. A buffer was created around each
camera location in order to estimate which locations of the active fireline were
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likely to have firebrands landing at the camera location (Figure S4). The width of
the buffer around the camera (Dy) was computed as the 95th percentile of the
cumulative normal distribution (with mean = 0) for lateral firebrand dispersion
from a point source over moderate distances (c. 30 m) as estimated by [45]:

Dy ¼
ffiffiffi
2

p
erfc�1 1

10
ry ð4Þ

where ry is the standard deviation of firebrands parallel to the wind direction, and
is approximated for gridded fire spread models by [45] as:

ry ¼ 0:92D ð5Þ

where D is the pixel width in metres. The above calculations lead to the use of a
7.4 m diameter buffer of each camera location. Vectors that intersected the buf-
fered camera locations were retained only when the timing of the firebrand detec-
tion was within ± 20 s of the peak firebrand impact rate as shown in Table 1, and
the vector origin at the fire front was recorded as a location of probable firebrand
source. A total of 258 firebrand acoustic detections during the peak firebrand flux
period were successfully traced back to source areas (of 6824 total acoustic detec-
tions). At each time step, a single camera can record multiple firebrand source
locations. A minimum convex polygon (MCP) comprising 100% of the source
area pixel locations was constructed using the adehabitatHR package [46] v 0.3.25
for cameras with at least five source area pixel locations. The crown fuel load ras-
ter derived from a LiDAR crown fuel model built specifically for the site [47] was
sampled within bounds of the MCP. The production of firebrands per unit
of crown fuel consumption using this ‘‘local maximum’’ approach (F’, firebrands
kg-1) was calculated as:

F
0

max ¼
F maxsres
wmaxA0

ð6Þ

where Fmax is the peak instantaneous recorded firebrand impact rate (number of
firebrands m-2 receiving area s-1); sres is the flaming residence time (s) of tree
crown branch and foliage material as observed in the camera footage; wmax is the
mean crown fuel load (kg m-2 source area) from the LiDAR fuel load grids of
[47] within the MCP; and A0 (m2 source area m-2 receiving area) is the dispersion
factor as defined in Eq. 2.

3. Results

Prior to the ignition of the crown fire by the heli-torch, each camera was deployed
and recorded for upwards of 75 min. During those 75 min of confirmed no-fire
environment, 6 of the 7 pre-fire recordings analyzed showed a low rate of false
positive detections (Fig. 2), averaging 0.2 false positive detection every minute per
camera. Camera 24, the sole camera in the open and not in a forest canopy,



recorded a higher rate of 2.5 false positive detections per minute, likely due to
higher wind speeds rocking the camera body and causing incidental noise. Given
the 6-min period between fireline ignition and passage of the fire front through all
cameras, the false positive rate is at worst 2.4% for camera 24 and likely on the
order of 0.25% for all other cameras. This value is far smaller than the estimated
18% false negative rate of missed detections.

The sum of detections per camera varied from 526 at camera 31 located 100 m
north (downwind) of the initial ignition location, to as little as 73 at camera 40,
which experienced a moderate-intensity flanking fire at the camera site. Peak rates
of firebrand impacts detected on the cameras occurred when the fire was on

Table 1
Summary Table of Camera Attributes and Acoustic Detection
Derivatives

Camera 23 24 25 26 27 28 31 32 40 42 Avg

Distance to ignition line

(m)

107 118 109 92 60 74 71 67 100 79 88

Tree density near cam-

era�
8 0 5 27 13 13 15 18 26 26 15

Pre-ignition detection rate

(impacts per camera

min-1)

– 2.51 0.07 0.15 0.28 – 0.16 0.04 0.53 – 0.5

Ignition time� (s) 45 111 61 66 111 53 72 61 98 45 72

Time of peak impact rate

(s)

200 230 190 180 200 180 160 190 140 200 187

Fire arrival time (s) 280 280 280 255 215 220 230 220 260 245 248

sres (s) 10 – 15 21 13 12 12 – 13 – 14

Peak impact rate (impacts

per camera s-1)

7.3 8.8 7.5 6.1 4.4 7.7 7 3.9 2 4.3 5.9

Fmax (impacts m-2 s-1) 105 126 108 88 63 111 100 56 29 62 85

Total detections (per

camera)

499 482 373 410 288 369 526 186 73 236 344

Total detections (per m2) 7162 6918 5353 5884 4133 5296 7549 2669 1048 3387 4939

wint (kg) 100 107 102 91 71 80 78 76 96 83 88

wmax (kg m-2) 1.8 1.9 2.1 1.5 1.7 – – 2.3 – 1.8 1.9

Camera distance to MCP

centroid (m)

60 60 75 70 < 5 – 75 33 – 42 53

F’ transverse uniform

method (firebrands

kg-1)

71 – 53 65 – – - 35 – 41 55

F’max local maximum

specific flux (firebrands

kg-1)

545 867 720 1151 450 – – 318 – 450 643

Camera 23 24 25 26 27 28 31 32 40 42 Avg

�Tree density near each camera was calculated as a sum of large trees visible from the UAV aerial imagery mosaic

within a 10-m radius of each camera, including only trees from a SE to SW azimuth from each camera, or an area of

78 m2 (135–225 degrees from true north). � Ignition times refers to the timing of the ignition due south (upwind) of

the camera (see Fig. 1). Camera 41 is not included due to malfunction of the camera during the firebrand impact

recording period

Fire Technology 2022



average 50 m from the fire front (Table 1; Fig. 3). Note that the transition to a
state of continuous firebrand impact from short-distance (10–20 m from fire front)
saturated the acoustic recognizer algorithm, and are thus not included in this
total. Peak impact rates averaged 85 impacts m2 s-1 across the ten cameras that
recorded impacts within 75 m of the fire’s proximity. The pattern of firebrand
impact as a function of distance varied greatly, with a number of cameras report-
ing unimodal responses with a maximum at distance (camera 25), or at closer ran-
ges (camera 42). Bimodal patterns were seen (cameras 24 and 26) as well as
monotonic ones (cameras 27 and 40). Despite the variety of camera locations

Figure 2. Spectrograms and associated video records for Camera 25,
looking southeasterly along a pre-existing fuel break and access
road. Timestamps in each of the four panels corresponds to time since
deployment of camera, with fire ignition at approximately 1:50:00
in this camera footage. The y-axis of each panel sonogram is
frequency in Hz. The * symbol in Panel A denotes a pre-ignition false
positive detection. � in Panel B denotes a distinct firebrand
detection; � in Panel C is the onset of large numbers of firebrands that
are indistinguishable and at close range to the head fire. Panel D is
immediately after the fire with likely Acoustic Impulsive Events
evident as noted by §.



relative to the control and ignition line, the vast majority of cameras reported a
fire location at the time of peak firebrand production within the control (Fig. 4),
except in the case of cameras such as 24 and 27 where the camera location was
never directly downwind of the main fire front, and instead only experienced the
peak firebrand impact rate when a flanking (lateral spread) fire approached on a
WNW vector. An inverse relationship was observed between canopy density and
the peak firebrand impact rates (Spearman’s correlation coefficient q = - 0.77;
see Table S1) as well as between canopy density and total number of detections
(q = - 0.44) suggesting some role of overstory trees in intercepting the fire-
brands detected by the camera acoustic signatures is possible.

For the transverse uniform scheme averaged across the entire source area from
the ignition line to the camera (Eq. 1), the number of firebrands detected as a
function of total fuel consumed was on average 59 firebrands kg-1 when only
canopy fine fuels (foliage, arboreal lichens, and fine branchwood< 1 cm) are con-
sidered. Since the assumption of linear spread of a head fire was only satisfied for

Figure 3. Cumulative firebrand detections (with a correlation score
greater than 0.58). The origin of the x-axis corresponds to the setup
of the first camera approximately 110 min prior to ignition. The red
vertical dashed line shows the ignition time. Detections to the left of
the dashed red line correspond to false positive detections. Acoustic
detections after the passage of the fire front (approximately time step
7,000) are shown here, but not otherwise included in the analyses.
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cameras in the eastern thinned area, only those cameras have a firebrand produc-
tion rate shown in Table 1. The source area inference method from the instanta-
neous spread direction (Eq. 6) yielded higher estimated production values, with a
median value of 643 firebrands kg-1 across the seven cameras where the source
area calculation was possible. This second method yielded a variability in the pro-
duction estimates from 318 (Camera 32) to 1151 (Camera 26) firebrands kg-1.
With firebrand production estimates from the instantaneous maximum approach
approximately 11 times higher than the averaging/integration approach, this sug-
gests that the peak firebrand pulse represents on the order of 90% of the total
firebrand input prior to the fire’s arrival.

4. Discussion

An average of 4,900 firebrands were detected per m2 by cameras in this study in
the time between fire ignition at the arrival of the fire front. This compares to the
approximately 1,500 firebrands per m2 detection rate in controlled outdoor igni-
tions of between 1 and 5 trees [48]. Field studies of incidental detections such as
in trampolines [23] for a lower-intensity fire in a pine stand, found total firebrand
impact densities of 330–530 firebrands m-2, with peak impact rates of 0.8–1.0 fire-

Figure 4. Firebrand impact rate (10-s moving window average) as a
function of distance to the fire front.



brands m2 s-1. The study of [23] used video recordings of aluminum tins adjacent
to but not in the direct path of an experimental fire. The impact of the lower fire
intensity (only 25% of that in this study) and large contrasts in tree physiology
and structure between spruce and pine prevents the direct comparison of results,
but broadly corresponds to the expected non-linear increase in firebrand produc-
tion and travel with increasing fireline intensity.

The analytical firebrand model of [19] predicts transport distances that are simi-
lar to those observed in this study. Using a 5 mm diameter and 15 mm length
cylinder under 25 km h-1 wind, a mean transport distance of 40 m is predicted in
[19], similar to the mean distance from camera to the centroid of the firebrand
MCP of 50 m observed in this study. With a mean firebrand mass of approxi-
mately 0.15 g, the � 640 firebrands kg-1 documented in this experimental crown
fire would yield around 90 g of firebrand material per kg of total crown fuel
(foliage biomass plus fine branchwood). This firebrand yield is higher than the
2–20 g firebrands kg-1 crown consumption as summarized in laboratory experi-
mental consumption of single conifer trees in [8]. Using the lower production rates
from the transverse uniform method (Eq. 1), total estimated firebrand mass would
be more on the order of 8 g kg-1, similar than the range presented in [8].
Although the new methodology presented here requires further cross-validation
with other methods, the number of firebrands detected and the distance from the
fire are in the ranges from modelling, laboratory, and the limited set of outdoor
experimental fires.

In addition to the distinct firebrand impact events recorded in the camera audio
track, numerous other acoustic phenomenon were recorded. Strong ambient winds
are typical of high-intensity wildfires, as are fire-induced winds both before the
arrival of the fire front (indraft) as well as after [49]. While ambient wind speeds
were relatively light on the day of the experimental fire (12 km h-1 gusting to
26 km h-1) the stronger fire-induced winds created noticeable sound in the camera
recording, as captured by the Normalized Difference Soundscape Index [50]
(Suppl. Figure S5). NDSI values of -0.5 to 0.0 at ignition increased to 0.5 to 0.9
at the time of fire passage, and remained elevated for 400–600 s after ignition.
Alongside this fire-induced wind was episodic sounds similar to the firebrand
impact, but occurring exclusively after the passage of the fire front when the fire
had passed and no further high-intensity fire was upwind. These events and those
observed during the active flaming observations at each camera likely correspond
to the combustion-derived Acoustic Impulsive Events (AIE) [29]. Such AIE as
recorded by [29] had an a sound pressure of 2 Pa recorded at 0.25 m distance,
equivalent to 60 dB at 0.25 m measurement distance. Similar AIE produced at the
main flaming fire front but recorded 25 m away, coincident with the shortest dis-
ance of maximum firebrand production for most cameras (Fig. 3), would register
at 20 dB. This 20 dB noise would be far below the approximately 40 dB hard
drive noise of the camera units [40]. Such low sound intensities of AIEs would
only be recorded by these camera units if within 2.5–3.0 m of the fire front,
assuming an ideal inverse-square decay in sound intensity with distance. For these
high-intensity wildfires, numerous visible firebrands alongside strong indraft winds
are apparent in the camera footage that likely inhibit the detection of AIEs. For
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lower-intensity surface fires with fewer firebrands [3] and using more specialized
acoustic equipment, AIEs would need to be distinguished from firebrand impact
events. The rate and intensity of AIEs may be related to combustion rates of duff
and other thermally thick materials immediately after the passage of the main
flaming front. This transitional consumption period of high soil heat inputs from
the flaming front is only broadly understood [51] but is an important link between
in-fire heat transfer processes and smouldering consumption models that largely
exclude the consumption processes of the uppermost duff or peat horizons [52].
Future studies could examine the acoustic patterns during and immediately after
the passage of the fire front using the same footage as this study, particularly if
paired with infrared imagery that captures smouldering consumption rates [53].

The pre-ignition detection rate of 0.5 false positives per camera minute in small
in contrast to the c. 350 total detections per camera during the experimental fire
(Table 1). This suggests the false positive rate is on the order of 1.0–1.5% of total
detections. The source of the false positives was not concretely examined, but a
likely source of false positives include the camera leg retention pins striking the
camera body when exposed to wind. High false positive detections were noted in
Camera 24, which sat in an open area and was exposed to far more wind than
any other camera. Future deployments of this equipment will secure these reten-
tion pins in order to further reduce the false positive rate. Some false positives
may also be due to the numerous large biting flies of the family Tabanidae that
are common in the region and attracted to dark coloured cubes: in this case, a
soot-covered camera box [54]. The authors routinely observe flies of this family
flying into metal objects with force; given the fly’s size of c. 300 mg [55], this too
may result in false positive detections. Flies of this variety are routinely controlled
using dark metal spheres to lure them away from livestock [56].

The firebrand densities documented in this study are not necessarily reflective of
firebrands with sufficient thermal energy to ignite materials, which have been inci-
dentally documented in partially ignited materials [22] or through thermal imaging
[2, 57]. This technique has the advantage of utilizing existing experimental fire
equipment, using a simple, existing acoustic analysis technique that can be applied
to historical in-fire camera footage for added value to existing experimental fire
documentation. However, the fraction of firebrands as detected by this acoustic
technique that have sufficient heat content to lead to the ignition of surface fuels
is unknown. Observations in a controlled outdoor setting of ember generation and
heat content [43] suggest that between 6 and 30% of firebrands are of sufficient
temperature and size to sustain ignition over distances as far as 8 m.

The distance of the maximum instantaneous firebrand impact rates observed
here, often peaking between 10 to 90 m from the fire front (excluding the very
close-range ember shower of< 10 m within a head fire) coincides with previous
studies on the efficacy of fuel breaks. For wildfires in western USA, typically of
lower intensity than the experimental fire studied here, roadways and mechanically
cleared (bulldozer with blade) fuel breaks both on the order of 10 m wide were
effective in stopping fire spread only 50% of the time [58]. Storey et al. [2], in
their analysis of spot fires in Australia that were closer to the fireline intensity
observed here, showed a median spot fire distance of 100 m. In Canada, the zone



30–100 m from homes is considered the outermost ‘‘zone 3’’ where thinning and
pruning treatments are recommended to reduce individual tree torching [59]; tree
torching and crown consumption creates updrafts that are conducive to firebrand
generation and travel [3].

All but two cameras 24 and 27 showed a peak firebrand production rate in the
control (Fig. 5). Wildfire physics modelling using FIRETEC to simulate fire beha-
viour and firebrand transport and production was conducted in this same fuel
complex [17] using a constant firebrand production rate per unit volume of
canopy, but limiting firebrand transport by a minimum vertical updraft velocity
criteria at launch. Solely by the reduction in intensity due to thinning of dense
clusters of black spruce, firebrand production was estimated to be reduced by
approximately 75% [17]. Direct comparisons are difficult due to the conflation of
distance to the camera and fuel load (i.e. the cameras in this study were placed in
the thinned treatment). However, the pattern of 8 of 10 cameras observing a
source area for the peak firebrand shower in the denser control area suggests a
bias towards increased firebrand production and transport in the control. Flame
length observations indicate double the flame height and threefold higher intensity
in the control as compared to the treatment [39].

Though the proof of concept shown here only applies to a single experimental
fire, the methodology used may be applied to archival footage of well-documented
experimental fires [57, 61, 62] in order to compute a larger number of firebrand
production values across a variety of fuel and fire intensity settings. The firebrand
production and travel estimates produced from this method may also be used to
improve parameter estimates for firebrand transport models [3, 18]. Future exten-
sion of this method will involve the analysis of the amplitude of the firebrand
impact event, as it likely relates to the kinetic energy of the impacting firebrand.
Similar techniques are used in the measurement of rain drop kinetic energy with
acoustic distrometers [63].

5. Conclusion

A well-observed experimental crown fire in a Canadian boreal spruce stand was
analyzed for the acoustic detection of firebrands impact in-fire camera boxes. Fire-
brand detections were detected with low false negative rate (< 15%) and very low
false positive rate (< 1%). The methodology documented here represents an
opportunity to re-examine prior experimental fires to compute firebrand produc-
tion rates where two key datasets are available: (1) preserved audio tracks of in-
fire cameras; (2) well-documented rate of spread over time, via a dense rate of
spread timer grid, or else reconstructed from aerial video. Firebrand impacts were
detected up to 100 m away, with a rapid increase in the detection rate around
75 m. Using a spatial estimate for the consumption of canopy fuels, it is estimated
that 640 firebrands were detected per kg of canopy fuel consumed, when consider-
ing only the peak medium-distance firebrand shower approximately 50 m from the
fire front. This peak coincided with the highest observed fireline intensity values in
the unthinned area. This strong pattern of firebrand production in the control
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with two to three-fold higher fire intensity suggests this observed fire front dis-
tance at peak firebrand shower may be farther than in a scenario of uniform fuels.
The observed bias towards enhanced firebrand production and transport in pock-
ets of high intensity fire corresponds with analytical firebrand models as well as
fire fluid dynamics models. Observations here also corroborate community wildfire
mitigation guidance that emphasizes the reduction in tree torching potential (and
therefore intensity) in the 30 to 100 m from structures as a key method of reduc-
ing the firebrand influx.
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