Molecular Ecology (2011)

FROM THE COVER

An ancient icon reveals new mysteries: mummy DNA resurrects a cryptic species within the Nile crocodile

EVON HEKKALA,*+¹ MATTHEW H. SHIRLEY,‡¹ GEORGE AMATO,† JAMES D. AUSTIN,‡ SUELLEN CHARTER,§ JOHN THORBJARNARSON,‡¶ KENT A.VLIET,** MARLYS L. HOUCK,§ ROB DESALLE,† and MICHAEL J. BLUM††

*Department of Biological Sciences, Fordham University, New York, NY, USA, †Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA, ‡Department of Wildlife Ecology & Conservation, University of Florida, Gainesville, FL, USA, §Institute for Conservation Research, San Diego Zoo, San Diego, CA, USA, ¶Wildlife Conservation Society, New York, NY, USA, **Department of Biological Sciences, University of Florida, Gainesville, FL, USA, ++Department of Ecology & Evolutionary Biology, Tulane University, New Orleans, LA, USA

Abstract

The Nile crocodile (Crocodylus niloticus) is an ancient icon of both cultural and scientific interest. The species is emblematic of the great civilizations of the Nile River valley and serves as a model for international wildlife conservation. Despite its familiarity, a centuries-long dispute over the taxonomic status of the Nile crocodile remains unresolved. This dispute not only confounds our understanding of the origins and biogeography of the 'true crocodiles' of the crown genus Crocodylus, but also complicates conservation and management of this commercially valuable species. We have taken a total evidence approach involving phylogenetic analysis of mitochondrial and nuclear markers, as well as karyotype analysis of chromosome number and structure, to assess the monophyletic status of the Nile crocodile. Samples were collected from throughout Africa, covering all major bioregions. We also utilized specimens from museum collections, including mummified crocodiles from the ancient Egyptian temples at Thebes and the Grottes de Samoun, to reconstruct the genetic profiles of extirpated populations. Our analyses reveal a cryptic evolutionary lineage within the Nile crocodile that elucidates the biogeographic history of the genus and clarifies long-standing arguments over the species' taxonomic identity and conservation status. An examination of crocodile mummy haplotypes indicates that the cryptic lineage corresponds to an earlier description of C. suchus and suggests that both African Crocodylus lineages historically inhabited the Nile River. Recent survey efforts indicate that C. suchus is declining or extirpated throughout much of its distribution. Without proper recognition of this cryptic species, current sustainable use-based management policies for the Nile crocodile may do more harm than good.

Keywords: ancient DNA, African biogeography, *Crocodylus*, *C. niloticus*, *C. suchus*, mummy *Received 30 January 2011; revision received 6 July 2011; accepted 7 July 2011*

Correspondence: Evon Hekkala,

E-mail: Ehekkala@Fordham.edu

We dedicate this work to our co-author, John Thorbjarnarson, who passed during the final preparation of this manuscript and whose unwavering commitment to crocodile conservation has been an inspiration to all of us.

¹Contributed equally as joint first authors.

Introduction

The idea that taxonomy is destiny (May 1990) is particularly relevant to the conservation and management of crocodilians (Hutton 2000). Current policies intended to promote sustainable harvest of managed crocodile populations are based predominantly on morphological criteria that provide limited taxonomic and phylogenetic

2 E. HEKKALA ET AL.

resolution (Brazaitis 1973; Ross 1998). Assumptions of genetic homogeneity and continuing taxonomic uncertainty within this group raise the concern that management plans may not adequately protect extant diversity and evolutionary potential, especially in more widespread species. This situation is exemplified by the Nile crocodile (*Crocodylus niloticus*), a widespread, commercially exploited species that has become a model of international wildlife conservation (Ross 1998; Hutton 2000; Fergusson 2010) despite a history of taxonomic discord that has persisted since the eighteenth century (Table 1; Fuchs *et al.* 1974, King & Burke 1989).

The Nile crocodile is comprised of 11 synonymized, historically described species and seven previously proposed subspecies (Table 1). As currently managed, the species is recognized as a single entity, although recent molecular studies provide evidence to the contrary. Limited phylogenetic studies indicate that *C. niloticus* is paraphyletic (Schmitz *et al.* 2003; Meredith *et al.* 2011), and multilocus microsatellite comparisons have shown that populations across Africa are geographically differentiated (Hekkala *et al.* 2009).

Although the Nile crocodile is considered widespread with a largely sub-Saharan distribution, managing this culturally and commercially valuable species as a single, widespread evolutionary lineage may be contributing to a globally significant loss of crocodilian diversity (Hekkala *et al.* 2009; Shirley *et al.* 2009). This concern is particularly important in western regions with populations that are increasingly susceptible to range contraction and local extirpation (Shirley *et al.* 2009). For example, populations were found in the central Sahara until the late nineteenth century (de Smet 1999) though only small isolates may persist in some locales today (Shine *et al.* 2001).

Here we test the hypothesis that the Nile crocodile is a single, homogeneous evolutionary lineage through total evidence molecular analysis of 5016 bp of mitochondrial and nuclear sequence data from samples collected from wild populations across Africa and Madagascar (Fig. 1, Table 2). We provide a complementary temporal perspective spanning over 2 200 years through diagnostic haplotype analysis of historical specimens from museum holdings, including crocodile mummies from the ancient Egyptian sites of Thebes and the Grottes de Samoun. Finally, we compare our sequence-based conclusions with karyotype analysis.

Methods

Contemporary samples and markers

We collected 123 samples of Nile crocodiles from throughout Africa (Fig. 1, Table 2). Collections were made from wild or wild-caught, ranch-held individuals and consisted of tail tissue or fresh blood (<0.5 mL) either in lysis buffer or dried on Whatman filter paper.

Table 1 Taxonomic History of the Nile Crocodile. Locality refers to the type locality designation in the literature description, which may not be the same as the origin of the type specimen for that taxon

Taxon	Author and Year	Locality
Crocodylus niloticus	Laurenti 1768	Egypt
Synonyms		
Crocodylus vulgaris	Cüvier 1807	Egypt
Crocodylus suchus	Geoffroy Saint-Hilaire 1807	Nile and Niger Rivers
Crocodilus multiscutatus	RÜPPELL in Cretzschmar 1826	Sudan
Crocodilus marginatus	GEOFFROY 1827	Egypt
Crocodilus lacunosus	GEOFFROY 1827	Egypt
Crocodilus complanatus	GEOFFROY 1827	Egypt
Crocodilus octophractus	RÜPPELL in GRAY in Griffith & Pidgeon 1831	Sudan
Alligator cowieii	SMITH in Hewitt 1937	South Africa
Crocodylus binuensis	Baikie 1857	Nigeria
Crocodilus madagascariensis	Grandidier 1872	Madagascar
Crocodilus vulgaris var. madagascariensis	Boettger 1877	Madagascar
Crocodilus hexaphractos	RÜPPELL in SCHMIDT 1886 (nomen nudum)	Sudan
Proposed subspecies		
Crocodylus niloticus niloticus	LAURENTI 1768	Egypt
Crocodylus niloticus africanus	LAURENTI 1768	East Africa
Crocodylus niloticus chamses	Bory de Saint-Vincent 1824	Southern Congo
Crocodylus niloticus cowiei	SMITH in Hewitt 1937	South Africa
Crocodylus niloticus madagascariensis	Grandidier 1872	Madagascar
Crocodylus niloticus pauciscutatus	Deraniyagala 1948	Kenya
Crocodylus niloticus suchus	Geoffroy Saint-Hilaire 1807	West Africa

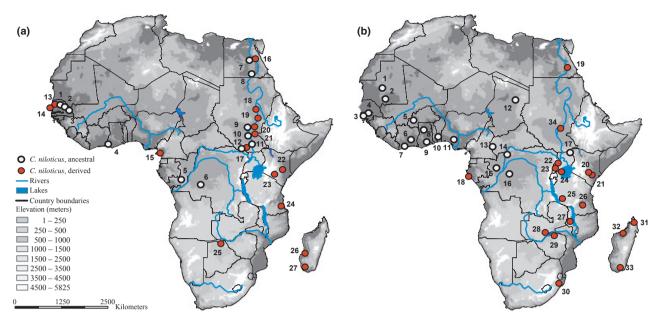


Fig. 1 Map of sample localities showing the distribution of ancestral (*white*) and derived (*red*) haplotypes for historical pre-1975 (a) and contemporary post-1975 (b) specimens.

To better understand the evolutionary history of C. niloticus in relation to true crocodiles, our analyses included data from samples of seven other Crocodylus species representing both Asian and New World lineages. The remaining members of the Crocodylinae (Osteolaemus tetraspis and Mecistops cataphractus) and Alligator mississippiensis served as outgroups, reflecting the most recent phylogenetic hypotheses for the crown group of the Crocodylidae and the Order Crocodylia (Gatesy & Amato 1992; Brochu 2003; McAliley et al. 2006; Meredith et al. 2011). These taxa were included from samples taken from captive specimens (St. Augustine Alligator Farm, St. Augustine, FL, USA) or previously published sequences available on Genbank as follows: C. rhombifer, C. acutus, C. moreletii, Mecistops cataphractus and Osteolaemus tetraspis (all amplified and sequenced as part of this study), C. intermedius (12s-AY239132, 16s-AY239146, dloop-AF460207, rag1—AY239173), C. porosus (12s—AY770534, 16s— EU621805, dloop-AF460213, WANCY-DQ273698, ND4-AJ810453), C. siamensis (mtDNA-EF581859, rag1—AY136677) (Ray & Densmore 2002; Gatesy et al. 2003).

We examined sequence variation across a total of 5 016 bp from nine gene regions. Five regions (2761 bp) were mitochondrial (mtDNA) and four were nuclear (nDNA) (2254 bp), as follows: control region/dloop (735 bp); 12s rRNA (421 bp); 16s rRNA (415 bp); WAN-CY tRNA cluster (Seutin *et al.* 1994) from the ND2-flanking region including tRNA_Trp, tRNA_Ala, tRNA_Asn, tRNA_Cys, and part of tRNA_Tyr (330 bp); NADH dehydrogenase 4 (ND4, 860 bp); recombination-

activating gene 1 (rag1, 469 bp); ribosomal protein S6 (693 bp); and introns for tropomyosin (330 bp) and ornithine decarboxylase (762 bp) (Friesen *et al.* 1999).

Contemporary sample data collection

DNA was extracted using Qiagen Easy-DNA extraction kits or standard phenol-chloroform methods. Extraction products were stored at 50 ng/µL. PCR cocktails and cycling conditions were optimized for each marker (Table S1, Supporting information) and amplifications were performed on an ABI 9700 thermocycler in 20-25 µL volumes. Sanger sequencing reactions were carried out using BigDye v3.1 sequencing kits in 6-8 µL volumes. Gene regions were sequenced in both directions on either an ABI 3700 or 3730XL automated capillary sequencer. Base calling was performed with Sequencher v4.1 (Genecodes Corp.). Consensus sequences were produced with CLC v3.6.2. Marker datasets were compiled and aligned individually in MEGA4 (Tamura et al. 2007) utilizing Clustal W (Larkin et al. 2007) (Gap penalties = 50, Gap Extension penalties = 25) and checked by eye prior to concatenation.

Contemporary sample analyses

Sequence data were first analyzed for fixed characters using Population Aggregation Analysis (Davis & Nixon 1992) and terminal taxa with unique and fixed characters were subsequently examined for phylogenetic structure with data from all species combined by genome and concatenated for total evidence analysis (Maddison 1997;

Map Number	Terminal Label	Country	Locality	Collector	Year Collected	Museum	Specimen#	Notes
Figure 1A*	*.							
1	SENEGAL_1825	Senegal	UNK	G.S. Perrottet &	1825–1829	NHNM	1977_1606	
c				F.M.K. Leprieur	F 00 F		00100	
N ر	SENECAL_1934	Senegal	redougou(a)	F.C. Wonder	1934	FININH MARTINI	20/98	
Ω <	JEINEGAL_1024 WODV COACT 1995	Senegal		Changeriart	approx. 1824 1885	MININ	1985407	
ŧυ	REP CONGO_1882	Republic of Congo	N'ganchou	Cuaper P.S. de Brazza	1886	NHNW	1886_182	Not included in analysis, partial sequence identical to
								REP CONGO 1886
5 9	REP CONGO_1886 DFM REP CONGO_1924	Republic of Congo Dem Remiblic of	N'gouchou Kasai River	P.S. de Brazza Father R. Callewaert	1882 1924	MNHN	1886_186 28004	I
þ		Congo	TO A TAT TROPACE		17/1		10/07	
	MUMMY_THEBES_A	Egypt	Mummy - Grottes de Thebes	Cailloud	700–2200 YBP	NHNW	$1986_{-}1471$	brought from Egypt 1820's
~	MUMMY_THEBES_B	Egypt	Mummy - Grottes de Thebes	Cailloud	700-2200 YBP	NHNW	$1986_{-}1473$	brought from Egypt 1820's
2	MUMMY_THEBES_C	Egypt	Mummy - Grottes de Thebes	Cailloud	700-2200 YBP	NHNW	$1986_{-}1479$	brought from Egypt 1820's
7	MUMMY_HAUTE	Egypt	Mummy, Haute Egypt	V. Schoelcher	700-2200 YBP	NHNM	$1886_{-}445$	
8	MUMMY_SAMOUN_A	Egypt	Mummy - Grottes de Samoun	Gervais	700–2200 YBP	NHNM	$1986_{-}1475$	
8	MUMMY_SAMOUN_B	Egypt	Mummy - Grottes de Samoun	Gervais	700-2200 YBP	NHNW	$1986_{-}1478$	
8	MUMMY_SAMOUN_C	Egypt	Mummy - Grottes de Samoun	Pariset	700-2200 YBP	NHNW	$1986_{-}1480$	
6	SUDAN_MELUT_1922	Sudan	Melut	Anthony	1927	AMNH	42962	
10	SUDAN_WNA_1922	Sudan	White Nile	Taylor	1922	AMNH	23464	
11	SUDAN_WNB_1922	Sudan	White Nile	Taylor	1922	AMNH	23465 10070	
12	ZIIVIDADWE_1911	Zimbabwe	raraaje	Lang - Cnapin Expedition	1171	AINUNA	100/9	
13	SENEGAL_1803	Senegal	UNK	C. Heudelot	1803–1827	NHNM	7364	
14	SENEGAL_1768	Senegal		Adanson	1749–1754	NHNM	7524	Crocodylus vert TYPE
15 مار	CAMEKUUN_1966	Cameroon	Edea, Sanaga Kiver	1.J. Papentuss	1900	CAS	133814 7546	Current data multicarrie
01	EGIL1_1077	ъgурт	INITE	1. Duvant	approx. 1022	INTININ	0701	Crocoaytus outgaris

Table 2 Contemporary and Historical Samples Utilized in This Study. Locality and sampling data for each specimen utilized in this study. For archival material, both the original collection locality and the museum accession information are listed. Terminal Label refers to the specimen ID given in Fig. 2, Figs S1 and S2, Table 3, and Table S3. Museum acconyms: AMNH—American Museum of Natural History (New York, NY, USA), CAS—California Academy of Sciences (San Francisco, CA, USA), FLMNH—Florida Museum of Natural History (Gainesville, FL, USA), MNHN—Museum Nationale d'Historie Naturelle (Paris, France), USNM—National Museum of Natural History, Smithsonian Insti-

© 2011 Blackwell Publishing Ltd

Map Number	Terminal Label	Country	Locality	Collector	Year Collected	Museum	Specimen#	Notes
17	ZIMBABWE_1912	Zimbabwe	Faradje	Lang - Chapin Expedition	1912	AMNH	10081	
18	SUDAN_UN_1922	Sudan	Zeraf, Upper Nile	Taylor	1922	AMNH	23471	
19	SUDAN_WNC_1922	Sudan	White Nile	Taylor	1922	AMNH	23466	
20	SUDAN_WND_1922	Sudan	White Nile	Taylor	1922	AMNH	23469	
21	SUDAN_WNE_1922	Sudan	White Nile	Taylor	1922	AMNH	23470	
22	KENYA_1960	Kenya	Garissa	R.H. Pine	1960	AMNH	88634	
23	KENYA_1919	Kenya	Nairobi	H.C. Raven	1919–1920	NNN	63592	
24	TANZANIA_1972	Tanzania	UNK	USFWS Confiscation	1972	AMNH	108941	
25	BOTSWANA_1967	Botswana	Shakawe	T. Liversedge	1967	NNN	195448	
26	MADAGASCAR_1885	Madagascar	Tulear	A. Grandidier	1870	MHNM	6498	Crocodylus madagascariensis TYPE
27	MADAGASCAR_A_1931	Madagascar	Amboasary	H. Bluntschli	1931	AMNH	71192	
27	MADAGASCAR B 1931	Madagascar	Amboasary	H. Bluntschli	1931	AMNH	142496	
27	MADAGASCAR_C_1931	Madagascar	Amboasary	H. Bluntschli	1931	AMNH	71191	
Figure 1b					0007		41001 000 t	
Ι	MAUKITANIA_I	Mauritania	Matmata	S. Kodin	1993	MHNM	~c08c_5661	Short 125 and dloop sequences only
7	MAURITANIA_2	Mauritania	Aioun el-Atrouss	Bohme	UNK	ZFMK	Uncatalogued	From 4 specimens utilized in Schmitz <i>et al.</i> 2003
ŝ	SENEGAL	Senegal	Casamance River	M.H. Shirley	2008	FLMNH	Uncatalogued	Djibelor Crocodile Farm - wild stock
4	GAMBIA_1	The Gambia	Kedougou, Gambia River	W. Bohme	UNK	N/A		Specimen utilized in Schmitz <i>et al.</i> 2003
4	GAMBIA_2	The Gambia	River Gambia NP	M.H. Shirley	2008	FLMNH	Uncatalogued	
4 D	GAMBIA_3 BURKINA FASO	The Gambia Burkina Faso	River Gambia NP UNK	M.H. Shirley Bohme	2008 UNK	FLMNH N/A	Uncatalogued	
6	IVORY COAST_1	Cote-d'Ivoire	Abi Lagoon	M.H. Shirley	2006	FLMNH	Uncatalogued	Not included in phylogenetic analysis, same as haplotype found at Site 7
7	IVORY COAST_2	Cote-d'Ivoire	Go River	M.H. Shirley	2006	FLMNH	Uncatalogued	
8		Ghana	Mole National Park	M.H. Shirley	2006	FLMNH	Uncatalogued	
6	GHANA_2	Ghana	Legon Farms Dam, Accra	M.H. Shirley	2006	FLMNH	Uncatalogued	Not included in phylogenetic analysis, same as haplotype found at Site 8
10	BENIN*	Benin	UNK	R. Bourgat	1978	MNHN	1978_{2051}	
11	NIGERIA	Nigeria	Escravos River, Niger Delta	M.P.O. Dore	2009	FLMNH	Uncatalogued	Bushmeat sample collected in Benin City
12	CHAD	Chad	Ennedi	M. Klemens	1997	AMNH	145361*	Short 12S and dloop sequences only

© 2011 Blackwell Publishing Ltd

Table 2 (Continued)

CRYPTIC AFRICAN CROCODYLUS SPECIES REVEALED 5

13 CENTRAL AFR REP TWORD Central African Republic Beheart, near Bangui L. Chirio 195 14 REP CONCO_2* REP CONCO_2* Republic of Congo Beneart, near Bangui L. Chirio 195 15 DEM REP CONCO_2* REP CONCO_3 Republic of Congo Disouala rate for congo Lisouala any Herbes V. de Buffrenti 1986 17 UCANDA_2 Uganda Ridepo Valley NP M.H. Shirley 2003 17 UCANDA_2 Uganda Ridepo Valley NP M.H. Shirley 2003 18 RFOUNDA_2 Uganda Ridepo Valley NP M.H. Shirley 2003 19 EGYTP_1 Egypt Lake Naser, near Aswan M.H. Shirley 2003 19 EGYTP_3 Egypt Lake Naser, near Aswan M.H. Shirley 2003 19 EGYTP_3 Egypt Lake Naser, near Aswan M.H. Shirley 2003 10 EGYTP_3 Egypt Lake Naser, near Aswan M.H. Shirley 2003 11 Kenya Tan River R. Fergusson 2003 2003	Locality C	Collector	Year Collected	Museum	Specimen#	Notes
REP CONGO.1* Republic of Congo Dugou, Outangi River V. de Buffrenil REP CONGO.3* Republic of Congo Likouala, Congo Likouala, Congo Likouala, Congo REP CONGO.3* Republic of Congo Likouala, Congo Likouala, Congo Likouala, Congo REP CONGO.3* Republic of Congo Likouala, Congo Likouala, Congo Likouala, Congo DEM REP CONGO.4 Republic of Congo Likouala, Congo Likouala, Congo Likouala, Congo UGANDA.2 Uganda Kidepo Valley NP M.H. Shirley UGANDA.2 Uganda Kidepo Valley NP M.H. Shirley CABON.1 Uganda Kidepo Valley NP M.H. Shirley CABON.1 Uganda Kidepo Valley NP M.H. Shirley EGYPT-3 Egypt Lake Nasser, near Aswan M.H. Shirley EGYPT-3 Egypt Lak		Chirio	1995	NHNM	1997_3171*	MNHN 1997_3171, Short 12S
REP CONGO 7: Republic of Congo Likoudia (Edzala) V. de Buffrenil REP CONGO 3: Republic of Congo Lukoudia (Edzala) V. de Buffrenil REP CONGO 3: Republic of Congo Lukoudia, Congo V. de Buffrenil REP CONGO 3: Republic of Congo Lukoudia, Congo V. de Buffrenil UGANDA 1 Uganda Sidepo Valley NP M.H. Shirley UGANDA 1 Uganda Kidepo Valley NP M.H. Shirley UGANDA 2 Uganda Kidepo Valley NP M.H. Shirley UGANDA 2 Uganda Kidepo Valley NP M.H. Shirley CAPNT 2 Egypt Lake Nasser, near Aswan M.H. Shirley EGYTT 2 Egypt Lake Nasser, near Aswan M.H. Shirley EGYTT 3 Egypt Lake Nasser, near Aswan M.H. Shirley EGYTT 4 Egypt Lake Nasser, near Aswan M.H. Shirley EGYTT 3 Egypt Lake Nasser, near Aswan M.H. Shirley EGYTT 4 Egypt Lake Nasser, near Aswan M.H. Shirley EGYTT 3 Egypt Lake Nasser, near Aswan M.H. Shirley EGYTT 4 Egypt		de Buffrenil	1986	NHNM	1987 1120	ana aroop sequences oruy
REP CONGO 2*Republic of Congo Dem. Republic of Congo 		de Buffrenil	1986	NHNM	1987_1114	
REP CONGO 4Republic of Congo DEM REP CONGO 4Republic of Lac Mai NdombeM.I. Eaton R. FregussonUGANDA_2UgandaKidepo Valley NPM.H. Shirley M.H. ShirleyUGANDA_2UgandaKidepo Valley NPM.H. Shirley M.H. ShirleyUGANDA_2UgandaKidepo Valley NPM.H. ShirleyUGANDA_2GabonFeti Loango, Loango NPM.H. ShirleyUGANDA_2EgyptLake Nasser, near AswanM.H. ShirleyEGYTT_3EgyptLake Nasser, near AswanM.H. ShirleyEGYTT_4EgyptLake Nasser, near AswanM.H. ShirleyEGYTT_3EgyptLake Nasser, near AswanM.H. ShirleyUGANDA_3UgandaTana RiverR. FergussonKENYA_1KenyaTana RiverR. FergussonKENYA_3KenyaTana RiverR. FergussonKENYA_3UgandaLake Raved, QueenM.H. ShirleyUGANDA_5UgandaLake Raved, QueenM.H. ShirleyUGANDA_5UgandaLake Raved, QueenM.H. ShirleyUGANDA_5UgandaLake Raved, QueenR. FergussonMALAWIMALAWIMalawiSouth ArticoUNKZIMBABWE_2ZimbabweZimbabweLake KaribaUNK <td></td> <td>de Buffrenil</td> <td>1986</td> <td>NHNW</td> <td>1986_{-1945}</td> <td></td>		de Buffrenil	1986	NHNW	1986_{-1945}	
DEM REP CONGO Dem. Republic of Lac Mai Ndombe R. Ferguson UGANDA_1 Uganda Kidepo Valley NP M.H. Shirley UGANDA_2 Congo Kidepo Valley NP M.H. Shirley UGANDA_2 Cabon Petit Loango, Loango, Loango NP M.H. Shirley GABON_2 Egypt Lake Naser, near Aswan M.H. Shirley GABON_2 Egypt Lake Naser, near Aswan M.H. Shirley EGYTT_3 Egypt Lake Naser, near Aswan M.H. Shirley EGYTT_4 Egypt Lake Naser, near Aswan M.H. Shirley EGYTT_3 Egypt Lake Naser, near Aswan M.H. Shirley EGYTT_4 Egypt Lake Naser, near Aswan M.H. Shirley EGYTT_3 Egypt Lake Naser, near Aswan M.H. Shirley EGYTT_3 Egypt Lake Naser, near Aswan M.H. Shirley EGYTT_4 Egypt Lake Naser, near Aswan M.H. Shirley EGYTT_3 Egypt Lake Naser, near Aswan M.H. Shirley EGYTT_4 Egypt Lake Naser, near Aswan M.H. Shirley EGYTT_5 Egypt Lake Naser, near Aswan M.H. Shirley EGYTT_5 Kenya Tana River R. Ferguson VCANDA_5 Uganda Ug		.J. Eaton	2004	FLMNH	Uncatalogued	
Congo UGANDA_1Uganda UgandaKidepo Valley NP Kidepo Valley NPM.H. Shirley M.H. Shirl		Fergusson	2002	N/A		Bushmeat sample collected in
UGANDA_1 Uganda Kidepo Valley NP M.H. Shirley UGANDA_2 Uganda Kidepo Valley NP M.H. Shirley UGANDA_2 Uganda Kidepo Valley NP M.H. Shirley GABON_2 Gabon Petit Loango, Loango NP M.H. Shirley EGYPT_3 Egypt Lake Nasser, near Aswan M.H. Shirley EGYPT_4 Egypt Lake Nasser, near Aswan M.H. Shirley EGYPT_5 Egypt Lake Nasser, near Aswan M.H. Shirley EGYPT_6 Lake Nasser, near Aswan M.H. Shirley EGYPT_12 Kenya Tan River R. Fergusson KENVA_2 Kenya Tan River R. Fergusson KENVA_3 Verova Uganda Lake Naser <td< td=""><td></td><td></td><td></td><td></td><td>,</td><td>Inongo</td></td<>					,	Inongo
GABON_1 Gabon Fidepo Valley NP M.H. Shirley GABON_1 Gabon Egypt Lake Nasser, near Aswan M.H. Shirley GABON_1 Gabon Egypt Lake Nasser, near Aswan M.H. Shirley EGYPT_3 Egypt Lake Nasser, near Aswan M.H. Shirley EGYPT_4 Egypt Lake Nasser, near Aswan M.H. Shirley EGYPT_3 Egypt Lake Nasser, near Aswan M.H. Shirley EGYPT_4 Egypt Lake Nasser, near Aswan M.H. Shirley EGYPT_5 Egypt Lake Nasser, near Aswan M.H. Shirley EGYPT_5 Egypt Lake Nasser, near Aswan M.H. Shirley EGYPT_5 Egypt Lake Nasser, near Aswan M.H. Shirley EGYPT_3 EGYPT Lake Nasser, near Aswan M.H. Shirley EGYPT_5 Egypt Lake Nasser, near Aswan M.H. Shirley EGYPT_3 Kenya Tana River R. Ferguson KENVA_3 Kenya Tana River R. Ferguson UGANDA_6 Uganda Semilik River, Semuliki NP M.H. Shirley UGANDA_6 Uganda Lake Mu		.H. Shirley	2009	FLMNH	Uncatalogued	
GABON I Gabon Petit Loango, Loango NP M.J. Eaton EGYPT_2 Egypt Lake Nasser, near Aswan M.H. Shirley EGYPT_3 Egypt Lake Nasser, near Aswan M.H. Shirley EGYPT_4 Egypt Lake Nasser, near Aswan M.H. Shirley EGYPT_5 Egypt Lake Nasser, near Aswan M.H. Shirley EGYPT_4 Egypt Lake Nasser, near Aswan M.H. Shirley EGYPT_3 Egypt Lake Nasser, near Aswan M.H. Shirley M.H. Shirley Lake Nasser, near Aswan M.H. Shirley M.H. Shirley Tana River R. Fergusson KEDNDA_3 Uganda Lake Nared, Queen M.H. Shirley UGANDA_6 Uganda Lake Buburo, Rui M.H. Shirley UGANDA_6 Uganda Lake Mburo, NP M.H. Shirley UGANDA_6 Uganda Lake Mburo, NP M.H. Shirley UGAND		.H. Shirley	2009	FLMNH	Uncatalogued	
GABON_2 Gabon Petit Loango, Loango, IP M.J. Eaton EGYPT_3 Egypt Lake Nasser, near Aswan M.H. Shirley EGYPT_4 Egypt Lake Nasser, near Aswan M.H. Shirley EGYPT_5 Egypt Lake Nasser, near Aswan M.H. Shirley EGYPT_5 Egypt Lake Nasser, near Aswan M.H. Shirley EGYPT_5 Egypt Lake Nasser, near Aswan M.H. Shirley EGYPT_3 Egypt Lake Nasser, near Aswan M.H. Shirley EGYPT_3 Egypt Lake Nasser, near Aswan M.H. Shirley EGYDA_3 Uganda Tana River R. Fergusson KENNA_3 Kenya Tana River R. Fergusson KENNA_3 Uganda Uganda Lake Muchison M.H. Shirley UGANDA_5 Uganda Lake Much, Queen M.H. Shirley UGANDA_5 Uganda Lake Bakuo, Ruth M.H. Shirley UGANDA_5 Uganda Lake Much, Queen M.H. Shirley UGANDA_6 Uganda Lake Bakuo, Ruth M.H. Shirley UGANDA_6 Uganda Lake Much, Queen M.H. Shirley		.J. Eaton	2006	FLMNH	Uncatalogued	
ECYPT_1EGYPT_1EgyptLake Nasser, near AswanM.H. ShirleyEGYPT_2EgyptLake Nasser, near AswanM.H. ShirleyEGYPT_5EgyptLake Nasser, near AswanM.H. ShirleyEGYPT_5EgyptLake Nasser, near AswanM.H. ShirleyEGYPT_3EgyptLake Nasser, near AswanM.H. ShirleyEGYPT_3EgyptLake Nasser, near AswanM.H. ShirleyEGYPT_3EgyptLake Nasser, near AswanM.H. ShirleyEGYPT_3KenyaTana RiverR. FergussonKENVA_3KenyaTana RiverR. FergussonKENVA_3UGANDA_4UgandaVictoria Nile, MurchisonM.H. ShirleyUGANDA_5UgandaSemilik River, Semuliki NPM.H. ShirleyUGANDA_5UgandaLake Edward, QueenM.H. ShirleyUGANDA_6UgandaLake Mburo, RuiziM.H. ShirleyUGANDA_5UgandaLake Mburo, RuiziM.H. ShirleyMALAWIMalawiSalima BayR. FergussonANZANIA_1MalawiSalima BayN.K.ZIMBABWE_1ZimbabweLake KaribaUNKZIMBABWE_2ZimbabweLake KaribaN.NKMALAWIMadagascarAnkarana CavesGarciaMADGASCAR_1MadagascarAnkarana CavesGarciaMADAGASCAR_2MadagascarAnkarana CavesGarciaMADAGASCAR_3MadagascarAnkarana CavesGarciaMADAGASCAR_4MadagascarAnkarana CavesGarciaMAD		.J. Eaton	2006	FLMNH	Uncatalogued	
EGYTT 2EgyptLake Nasser, near AswanM.H. ShirleyEGYTT 3EgyptLake Nasser, near AswanM.H. ShirleyEGYTT 4EgyptLake Nasser, near AswanM.H. ShirleyEGYTT 3EgyptLake Nasser, near AswanM.H. ShirleyEGYTA 2EgyptLake Nasser, near AswanM.H. ShirleyKENYA 2KenyaTana RiverR. FergussonKENYA 2KenyaTana RiverR. FergussonKENYA 3UgandaUrcoria Nile, MurchisonM.H. ShirleyUGANDA 4UgandaVictoria Nile, MurchisonM.H. ShirleyUGANDA 5UgandaSemilik River, Semuliki NIPM.H. ShirleyUGANDA 6UgandaLake Mburo, RuiziM.H. ShirleyUGANDA 6UgandaLake Mburo, RuiziM.H. ShirleyUGANDA 6UgandaLake Rdward, QueenM.H. ShirleyUGANDA 6UgandaLake Rdward, QueenM.H. ShirleyUGANDA 6UgandaLake Rdward, QueenM.H. ShirleyTANZANIA 1TanzaniaLake Rdward, QueenM.H. ShirleyTANZANIA 1TanzaniaLake Rdward, QueenM.H. ShirleyTANZANIA 1TanzaniaLake RutwaR. FergussonTANZANIA 1TanzaniaLake RutwaR. FergussonTANZANIA 1MalagascaSulina BayUNKTANZANIA 2ZimbabweLake KaribaUNKZIMBABWE 1ZimbabweLake KaribaUNKZIMBABWE 2ZimbabweLake KaribaUNKSOUTH AFRICA <t< td=""><td></td><td>.H. Shirley</td><td>2008</td><td>FLMNH</td><td>Uncatalogued</td><td></td></t<>		.H. Shirley	2008	FLMNH	Uncatalogued	
EGYTT_3EgyptLake Nasser, near AswanM.H. ShirleyEGYTT_4EgyptLake Nasser, near AswanM.H. ShirleyEGYTT_5EgyptLake Nasser, near AswanM.H. ShirleyKENYA_2KenyaTana RiverR. FergussonKENYA_3KenyaTana RiverR. FergussonKENYA_3KenyaTana RiverR. FergussonKENYA_3KenyaTana RiverR. FergussonKENYA_3UGANDA_4UgandaVictoria Nile, MurchisonM.H. ShirleyUGANDA_5UgandaSemiliki River, Semuliki NIPM.H. ShirleyUGANDA_6UgandaLake Edward, QueenM.H. ShirleyUGANDA_6UgandaLake Mburo NPM.H. ShirleyUGANDA_6UgandaLake Mburo NPM.H. ShirleyUGANDA_6UgandaLake RukwaR. FergussonTANZANIA_1TanzaniaRufiji RiverR. FergussonTANZANIA_1TanzaniaRufiji RiverR. FergussonTANZANIA_1MalaviSalima BayR. FergussonMALAWIZIMBABWE_1ZimbabweLake KaribaUNKZIMBABWE_1ZimbabweLake KaribaUNKZIMBABWE_2ZimbabweLake KaribaUNKZIMBABWE_2ZimbabweLake KaribaUNKZIMBABWE_3ZimbabweLake KaribaUNKZIMBABWE_3MadagascarAnkariana CavesGarciaMADAGASCAR_4MadagascarAnkariana CavesGarciaMADAGASCAR_4MadagascarAnkariana Caves <td></td> <td>.H. Shirley</td> <td>2008</td> <td>FLMNH</td> <td>Uncatalogued</td> <td></td>		.H. Shirley	2008	FLMNH	Uncatalogued	
EGYPT_4EgyptLake Nasser, near AswanM.H. ShirleyEGYPT_5EgyptLake Nasser, near AswanM.H. ShirleyKENYA_2KenyaTana RiverR. FergussonKENYA_3UGANDA_3UgandaTana RiverR. FergussonKENYA_3KenyaTana RiverR. FergussonKENYA_3UGANDA_5UgandaTana RiverR. FergussonUGANDA_5UgandaSemilik River, Semuliki NNPM.H. ShirleyUGANDA_5UgandaLake Mburo, RuiziM.H. ShirleyUGANDA_6UgandaLake Mburo, RuiziM.H. ShirleyUGANDA_5UgandaLake Mburo, RuiziM.H. ShirleyUGANDA_6UgandaLake Mburo, RuiziM.H. ShirleyUGANDA_5UgandaLake Mburo, RuiziM.H. ShirleyTANZANIA_1TanzaniaRufji RiverR. FergussonTANZANIA_1TanzaniaRufji RiverR. FergussonMALAWIZIMBABWE_2ZimbabweLake KaribaUNKZIMBABWE_2ZimbabweLake KaribaUNKSOUTH AFRICASouth AfricaLake KaribaNIKMADAGASCAR_3MadagascarAnkarana CavesGarciaMADAGASCAR_3MadagascarAnkarana CavesGarciaMADAGASCAR_4MadagascarAnkarana CavesGarciaMADAGASCAR_4MadagascarAnkarana CavesGarciaMADAGASCAR_4MadagascarAnkarana CavesGarciaMADAGASCAR_4MadagascarAnkarana CavesGarciaMADAGASCAR		.H. Shirley	2008	FLMNH	Uncatalogued	
GGYPT_5EgyptLake NasserUNKKENYA_1KenyaTana RiverK. FergussonKENYA_2KenyaTana RiverR. FergussonKENYA_3UgandaTana RiverR. FergussonKENYA_3UgandaTana RiverR. FergussonKENYA_3UgandaUgandaNite, MurchisonUGANDA_5UgandaSemiliki River, Semuliki NPM.H. ShirleyUGANDA_5UgandaLake Edward, QueenM.H. ShirleyUGANDA_6UgandaLake Mburo, RuiziM.H. ShirleyUGANDA_6UgandaLake Mburo, RuiziM.H. ShirleyUGANDA_6UgandaLake RukwaR. FergussonRIMITanzaniaRuiji RiverR. FergussonMALAWIZimbabweLake KaribaUNKZIMBABWE_2ZimbabweLake KaribaUNKZIMBABWE_2ZimbabweLake KaribaUNKZIMBABWE_2ZimbabweLake KaribaUNKZIMBABWE_2ZimbabweLake KaribaUNKZIMBABWE_2ZimbabweLake KaribaUNKZIMBABWE_2ZimbabweLake KaribaUNKZIMBABWE_2ZimbabweLake KaribaA. LeslieMADAGASCAR_3MadagascarAnkarana CavesGarciaMADAGASCAR_3MadagascarAnkarana CavesGarciaMADAGASCAR_3MadagascarAnkarana CavesGarciaMADAGASCAR_3MadagascarAnkarana CavesGarciaMADAGASCAR_4MadagascarAnkarana CavesGarcia <td>_</td> <td>.H. Shirley</td> <td>2008</td> <td>FLMNH</td> <td>Uncatalogued</td> <td></td>	_	.H. Shirley	2008	FLMNH	Uncatalogued	
KENYA_1KenyaTana RiverR. FergussonKENYA_2KenyaTana RiverR. FergussonKENYA_3KenyaTana RiverR. FergussonKENYA_3KenyaTana RiverR. FergussonUGANDA_3UGANDA_4UgandaVitoria Nile, MurchisonR. FergussonUGANDA_5UgandaSemliki River, Semuliki NPM.H. ShirleyUGANDA_6UgandaLake Edward, QueenM.H. ShirleyUGANDA_6UgandaLake Bdward, QueenM.H. ShirleyUGANDA_6UgandaLake Mburo, RuiziM.H. ShirleyUGANDA_6UgandaLake BukwaR. FergussonTANZANIA_1TanzaniaRuffi RiverR. FergussonTANZANIA_1TanzaniaLake RukwaR. FergussonTANZANIA_1TanzaniaLake KaribaUNKMALAWIZimbabweLake KaribaUNKZIMBABWE_3ZimbabweLake KaribaUNKSUDANSouth AfricaLake KaribaNIKMADAGASCAR_1MadagascarAnkarana CavesGarciaMADAGASCAR_2MadagascarAnkarana CavesGarciaMADAGASCAR_3MadagascarAnkarana CavesGarciaMADAGASCAR_4MadagascarAnkarana CavesGarciaMADAGASCAR_4MadagascarAnkarana CavesGarciaMADAGASCAR_4MadagascarAnkarana CavesGarciaMADAGASCAR_4MadagascarAnkarana CavesGarciaMADAGASCAR_5MadagascarAnkarana CavesGarcia </td <td></td> <td>NK</td> <td>UNK</td> <td>ZFMK</td> <td>Uncatalogued</td> <td>12s sequence from Schmitz et al 2003 (AY195943)</td>		NK	UNK	ZFMK	Uncatalogued	12s sequence from Schmitz et al 2003 (AY195943)
KENYA_2KenyaTana RiverR. FergussonKENYA_3KenyaTana RiverR. FergussonUGANDA_3UGANDA_4UgandaVictoria Nile, MurchisonM.H. ShirleyUGANDA_5UgandaSemliki River, Semuliki NPM.H. ShirleyUGANDA_6UgandaElizabeth NPM.H. ShirleyUGANDA_6UgandaLake MburoM.H. ShirleyUGANDA_6UgandaLake MburoM.H. ShirleyUGANDA_6UgandaLake MburoM.H. ShirleyTANZANIA_1TanzaniaLake MburoM.H. ShirleyTANZANIA_1TanzaniaLake RukwaR. FergussonTANZANIA_1TanzaniaRufij RiverR. FergussonMALAWIZimbabweLake KaribaUNKZIMBABWE_2ZimbabweLake KaribaUNKZIMBABWE_2ZimbabweLake KaribaUNKZIMBABWE_3ZimbabweLake KaribaR. FergussonSOUTH AFRICASouth AfricaLake KaribaN.NMADAGASCAR_1MadagascarAnkarana CavesGarciaMADAGASCAR_3MadagascarBetisboka RiverE. HekkalaMADAGASCAR_4MadagascarAnkarana CavesGarciaMADAGASCAR_4MadagascarBetisboka RiverE. HekkalaMADAGASCAR_4MadagascarAnkarana CavesGarciaMADAGASCAR_4MadagascarAnkarana CavesGarciaMADAGASCAR_4MadagascarBetisboka RiverGarciaMADAGASCAR_4MadagascarExtury, Fort Dauphin		Fergusson	2001	N/A		
KENYA_3KenyaTana RiverKENYA_3UgandaKenyaUGANDA_3UGANDA_4UgandaNile, MurchisonR. FegussonUGANDA_5UgandaSemliki River, Semuliki NIPM.H. ShirleyUGANDA_6UgandaLake Edward, QueenM.H. ShirleyUGANDA_6UgandaLake Edward, QueenM.H. ShirleyUGANDA_6UgandaLake Bdwuro, RuiziM.H. ShirleyUGANDA_6UgandaLake Mburo, RuiziM.H. ShirleyUGANDA_1TanzaniaLake RukwaR. FergusonTANZANIA_1TanzaniaLake RukwaR. FergusonTANZANIA_1TanzaniaLake RukwaR. FergusonTANZANIA_1TanzaniaLake RukwaR. FergusonTANZANIA_1ZimbabweLake KaribaUNKMALAWIZimbabweLake KaribaUNKZIMBABWE_2ZimbabweLake KaribaUNKZIMBABWE_3ZimbabweLake KaribaUNKMADAGASCAR_1MadagascarAnkarana CavesGarciaMADAGASCAR_4MadagascarAnkarana CavesGarciaMADAGASCAR_4MadagascarBetsiboka RiverE. HekkalaMADAGASCAR_4MadagascarAnkarana CavesGarciaMADAGASCAR_4MadagascarBetsiboka RiverE. HekkalaMADAGASCAR_4MadagascarBetsiboka RiverE. HekkalaMADAGASCAR_4MadagascarBetsiboka RiverE. HuciaMADAGASCAR_4MadagascarBetsiboka RiverE. HuciaMADAGASC		Feronscon	2001	N/A		
UGANDA_3UgandaUsandaUsandaUGANDA_5UgandaUgandaYittoria Nile, MurchisonM.H. ShirleyUGANDA_5UgandaSemliki River, Semuliki NPM.H. ShirleyUGANDA_5UgandaElizabeth NPM.H. ShirleyUGANDA_6UgandaLake Edward, QueenM.H. ShirleyUGANDA_6UgandaLake Mburo, RuiziM.H. ShirleyUGANDA_1TanzaniaLake Mburo, RuiziM.H. ShirleyTANZANIA_1TanzaniaLake Mburo, RuiziM.H. ShirleyTANZANIA_1TanzaniaRufiji RiverR. FergussonTANZANIA_1MalawiSalima BayUNKZIMBABWE_2ZimbabweLake KaribaUNKZIMBABWE_3ZimbabweLake KaribaUNKZIMBABWE_3ZimbabweLake KaribaUNKZIMBABWE_3ZimbabweLake KaribaUNKZIMBABWE_3ZimbabweLake KaribaUNKZIMBABWE_3ZimbabweLake KaribaUNKMADAGASCAR_1MadagascarAnkarana CavesGarciaMADAGASCAR_3MadagascarAnkarana CavesGarciaMADAGASCAR_4MadagascarBetsiboka RiverE. HekkalaMADAGASCAR_4MadagascarBetsiboka RiverE. HekkalaMADAGASCAR_4MadagascarBetsiboka RiverE. HekkalaMADAGASCAR_4MadagascarBetsiboka RiverE. HekkalaMADAGASCAR_4MadagascarBetsiboka RiverE. HekkalaMADAGASCAR_4MadagascarBetsury, Fort		Feronsson	2001	N/A		
CGANDA 4UgandaLake Edvard, QueenM.H. ShirleyUGANDA 5UgandaSemliki River, Semuliki NIPM.H. ShirleyUGANDA 6UgandaElizabeth NPM.H. ShirleyUGANDA 6UgandaLake Mburo, RuiziM.H. ShirleyUGANDA 6UgandaLake Mburo, RuiziM.H. ShirleyUGANDA 6UgandaLake Mburo, RuiziM.H. ShirleyTANZANIA 1TanzaniaLake RukwaR. FergussonTANZANIA 1TanzaniaRufiji RiverR. FergussonTANZANIA 1TanzaniaRufiji RiverR. FergussonTANZANIA 1TanzaniaRufiji RiverR. FergussonTANZANIA 1TanzaniaRufiji RiverR. FergussonMALAWIMalawiLake KaribaUNKZIMBABWE 2ZimbabweLake KaribaUNKZIMBABWE 3SoUTH AFRICASouth AfricaAnkarana CavesMADAGASCAR 1MadagascarAnkarana CavesGarciaMADAGASCAR 2MadagascarAnkarana CavesGarciaMADAGASCAR 4MadagascarBetsiboka RiverE. HekkalaMDAGASCAR 4MadagascarExturry, Fort Dauphinde HuelneSUDANSudanChor Melk en-NasirUNK		H Chirlou	2010	EI MNIH	IInmhalamad	
UGANDA_4UgandaSemliki River, Semuliki NPM.H. ShirleyUGANDA_5UgandaLake Edward, QueenM.H. ShirleyUGANDA_6UgandaLake Edward, QueenM.H. ShirleyUGANDA_6UgandaLake Mburo, RuiziM.H. ShirleyUGANDA_6UgandaLake Mburo, RuiziM.H. ShirleyTANZANIA_1TanzaniaLake Mburo, RuiziM.H. ShirleyTANZANIA_1TanzaniaLake KukwaR. FergussonTANZANIA_1TanzaniaRufiji RiverR. FergussonTANZANIA_1ZimbabweLake KaribaUNKMALAWIZimbabweLake KaribaUNKMALAWIZimbabweLake KaribaUNKZIMBABWE_2ZimbabweLake KaribaUNKZIMBABWE_3South AfricaLake KaribaNNKMADAGASCAR_1MadagascarAnkarana CavesGarciaMADAGASCAR_2MadagascarAnkarana CavesGarciaMADAGASCAR_3MadagascarAnkarana CavesGarciaMADAGASCAR_4MadagascarBestiboka RiverE. HekkalaMADAGASCAR_4MadagascarBestiboka RiverE. HekkalaMADAGASCAR_4MadagascarBestiboka RiverE. HekkalaMADAGASCAR_4MadagascarBestiboka RiverE. HekkalaMADAGASCAR_4MadagascarBestiboka RiverE. HekkalaMADAGASCAR_4MadagascarBestiboka RiverE. HekkalaMADAGASCAR_4MadagascarBestiboka RiverE. HekkalaMADAGASCAR_4Madagasc		farmic 'TT'	0107	T TN TIAT'T.T	Olicatalogueu	
UGANDA_5UgandaLake Edward, QueenM.H. ShirleyUGANDA_6UgandaLake Mburo, RuiziM.H. ShirleyUGANDA_6UgandaLake Mburo, RuiziM.H. ShirleyTANZANIA_1TanzaniaLake Mburo, RuiziM.H. ShirleyTANZANIA_1TanzaniaLake KukwaR. FergussonTANZANIA_1TanzaniaRufiji RiverR. FergussonTANZANIA_1TanzaniaLake KukwaR. FergussonTANZANIA_1ZimbabweLake KaribaUNKMALAWIZimbabweLake KaribaUNKZIMBABWE_2ZimbabweLake KaribaUNKZIMBABWE_3ZimbabweLake KaribaUNKSOUTH AFRICASouth AfricaLake St. LuciaA. LeslieMADAGASCAR_1MadagascarAnkarana CavesGarciaMADAGASCAR_3MadagascarAnkarana CavesGarciaMADAGASCAR_4MadagascarBethisiboka RiverE. HekkalaMADAGASCAR_4MadagascarBethiary, Fort Dauphinde HuelmeUDANSuDaNChor Melk en-NasirUNK		.H. Shirley	2010	FLMNH	Uncatalogued	
UGANDA_6UgandaLake Mburo, RuiziM.H. ShirleyTANZANIA_1TanzaniaLake Mburo, RuiM.H. ShirleyTANZANIA_1TanzaniaLake RukwaR. FergussonTANZANIA_1TanzaniaRufiji RiverR. FergussonTANZANIA_1TanzaniaRufiji RiverR. FergussonTANZANIA_1TanzaniaRufiji RiverR. FergussonTANZANIA_1TanzaniaRufiji RiverR. FergussonTANZANIA_1ZimbabweLake KaribaUNKZIMBABWE_2ZimbabweLake KaribaUNKZIMBABWE_3ZimbabweLake KaribaUNKZIMBABWE_3ZimbabweLake KaribaNKSUUTH AFRICASouth AfricaLake KaribaR. FergussonMADAGASCAR_1MadagascarAnkarana CavesGarciaMADAGASCAR_3MadagascarBetsiboka RiverE. HekkalaMADAGASCAR_4MadagascarEstuary, Fort DauphinGarciaMADAGASCAR_4MadagascarEstuary, Fort DauphinGarcia		.H. Shirley	2010	FLMNH	Uncatalogued	
TANZANIA_2TanzaniaDrainage, Lake Mburo NP Lake RukwaFregusson R. FergussonTANZANIA_1TanzaniaLake RukwaR. FergussonTANZANIA_1TanzaniaRufiji RiverR. FergussonMALAWIMalawiSalima BayUNKZIMBABWE_1ZimbabweLake KaribaUNKZIMBABWE_2ZimbabweLake KaribaUNKZIMBABWE_3ZimbabweLake KaribaUNKZIMBABWE_3ZimbabweLake KaribaUNKSOUTH AFRICASouth AfricaLake KaribaA. LeslieMADAGASCAR_1MadagascarAnkarana CavesGarciaMADAGASCAR_3MadagascarAnkarana CavesGarciaMADAGASCAR_4MadagascarBetsiboka RiverE. HekkalaMADAGASCAR_4MadagascarBetsiboka RiverE. HekkalaMADAGASCAR_4MadagascarBetsiboka RiverE. HekkalaMADAGASCAR_4MadagascarBetsiboka RiverUNKWADAGASCAR_4MadagascarBetsiboka RiverE. HekkalaMADAGASCAR_4MadagascarBetsiboka RiverUNKWADAGASCAR_4MadagascarBetsiboka RiverUNKWADAGASCAR_4MadagascarBetsiboka RiverUNK		.H. Shirlev	2010	FLMNH	Uncatalogued	
TANZANIA_2TanzaniaLake RukwaR. FergussonTANZANIA_1TanzaniaRufiji RiverR. FergussonTANZANIA_1TanzaniaRufiji RiverR. FergussonMALAWIMalawiSalima BayR. FergussonMALAWIMalawiLake KaribaUNKZIMBABWE_2ZimbabweLake KaribaUNKZIMBABWE_3ZimbabweLake KaribaUNKZIMBABWE_3ZimbabweLake KaribaUNKZIMBABWE_3ZimbabweLake KaribaNKSOUTH AFRICASouth AfricaLake St. LuciaA. LeslieMADAGASCAR_1MadagascarAnkarana CavesGarciaMADAGASCAR_3MadagascarAnkarana CavesGarciaMADAGASCAR_4MadagascarBetsiboka RiverE. HekkalaMADAGASCAR_4MadagascarChor Melk en-NasirUNK	buro NP				0	
TANZANIA_1TanzaniaRufiji RiverR. FergussonMALAWIMalawiSalima BayR. FergussonMALAWIMalawiSalima BayR. FergussonZIMBABWE_1ZimbabweLake KaribaUNKZIMBABWE_2ZimbabweLake KaribaUNKZIMBABWE_3ZimbabweLake KaribaUNKZIMBABWE_3ZimbabweLake KaribaUNKSOUTH AFRICASouth AfricaLake St. LuciaR. FergussonMADAGASCAR_1MadagascarAnkarana CavesGarciaMADAGASCAR_3MadagascarAnkarana CavesGarciaMADAGASCAR_4MadagascarBetsiboka RiverE. HekkalaMADAGASCAR_4MadagascarBetsiboka RiverE. HekkalaMADAGASCAR_4MadagascarBetsiboka RiverE. HekkalaSUDANSudanChor Melk en-NasirUNK		Fergusson	2001	N/A		
MALAWIMalawiSalima BayR. FergussonZIMBABWE_1ZimbabweLake KaribaUNKZIMBABWE_2ZimbabweLake KaribaUNKZIMBABWE_3ZimbabweLake KaribaUNKZIMBABWE_3ZimbabweLake KaribaUNKSOUTH AFRICASouth AfricaLake St. LuciaA. LeslieMADAGSCAR_1MadagascarAnkarana CavesGarciaMADAGASCAR_3MadagascarAnkarana CavesGarciaMADAGASCAR_4MadagascarBetsiboka RiverE. HekkalaMADAGASCAR_4MadagascarExtuary, Fort Dauphinde HuelmeSUDANSudanChor Melk en-NasirUNK		Fergusson	2001	N/A		
ZIMBABWE_1ZimbabweLake KaribaUNKZIMBABWE_2ZimbabweLake KaribaUNKZIMBABWE_3ZimbabweLake KaribaUNKZIMBABWE_3ZimbabweLake KaribaNKSOUTH AFRICASouth AfricaLake St. LuciaR. FergussonMADAGASCAR_1MadagascarAnkarana CavesGarciaMADAGASCAR_3MadagascarAnkarana CavesGarciaMADAGASCAR_3MadagascarBetsiboka RiverE. HekkalaMADAGASCAR_4MadagascarEstuary, Fort Dauphinde HuelmeSUDANSudanChor Melk en-NasirUNK		Fergusson	2001	N/A		
ZIMBABWE_2ZimbabweLake KaribaUNKZIMBABWE_3ZimbabweLake KaribaUNKZIMBABWE_3ZimbabweLake KaribaR. FergussonSOUTH AFRICASouth AfricaLake St. LuciaA. LeslieMADAGASCAR_1MadagascarAnkarana CavesGarciaMADAGASCAR_3MadagascarAnkarana CavesGarciaMADAGASCAR_3MadagascarBetsiboka RiverE. HekkalaMADAGASCAR_4MadagascarEstuary, Fort Dauphinde HuelmeSUDANSudanChor Melk en-NasirUNK		NK	UNK	N/A		12s sequence from Schmitz
ZIMBABWE_2ZimbabweLake KaribaUNKZIMBABWE_3ZimbabweLake KaribaUNKZIMBABWE_3ZimbabweLake KaribaR. FergussonSOUTH AFRICASouth AfricaLake St. LuciaA. LeslieMADAGASCAR_1MadagascarAnkarana CavesGarciaMADAGASCAR_2MadagascarAnkarana CavesGarciaMADAGASCAR_3MadagascarAnkarana CavesGarciaMADAGASCAR_4MadagascarBetsiboka RiverE. HekkalaMADAGASCAR_4MadagascarChor Melk en-NasirUNK						et al. 2003 (AY 195954/55)
ZIMBABWE_3ZimbabweLake KaribaR. FergussonSOUTH AFRICASouth AfricaLake St. LuciaA. LeslieSOUTH AFRICASouth AfricaLake St. LuciaA. LeslieMADAGASCAR_1MadagascarAnkarana CavesGarciaMADAGASCAR_2MadagascarAnkarana CavesGarciaMADAGASCAR_3MadagascarBetsiboka RiverE. HekkalaMADAGASCAR_4MadagascarBetsiboka RiverE. HekkalaMADAGASCAR_4MadagascarChor Melk en-NasirUNK		NK	UNK	N/A		12s sequence from Schmitz et al. 2003 (AY 195954/55)
SOUTH AFRICASouth AfricaLake St. LuciaA. LeslieMADAGASCAR_1MadagascarAnkarana CavesGarciaMADAGASCAR_2MadagascarAnkarana CavesGarciaMADAGASCAR_3MadagascarBetsiboka RiverE. HekkalaMADAGASCAR_4MadagascarBetsiboka RiverE. HekkalaMADAGASCAR_4MadagascarEstuary, Fort Dauphinde HuelmeSUDANSudanChor Melk en-NasirUNK		Fergusson	2002	N/A		
MADAGASCAR_1MadagascarAnkarana CavesGarciaMADAGASCAR_2MadagascarAnkarana CavesGarciaMADAGASCAR_3MadagascarBetsiboka RiverE. HekkalaMADAGASCAR_4MadagascarEstuary, Fort Dauphinde HuelmeSUDANSudanChor Melk en-NasirUNK		. Leslie	UNK	N/A		
MADAGASCAR_2MadagascarAnkarana CavesGarciaMADAGASCAR_3MadagascarBetsiboka RiverE. HekkalaMADAGASCAR_4MadagascarEstuary, Fort Dauphinde HuelmeSUDANSudanChor Melk en-NasirUNK	_	arcia	2002	N/A		
MADAGASCAR_3 Madagascar Betsiboka River E. Hekkala MADAGASCAR_4 Madagascar Estuary, Fort Dauphin de Huelme SUDAN Sudan Chor Melk en-Nasir UNK	_	arcia	2002	N/A		
MADAGASCAR_4 Madagascar Estuary, Fort Dauphin de Huelme SUDAN Sudan Chor Melk en-Nasir UNK		Hekkala	2000	N/A		
SUDAN Sudan Chor Melk en-Nasir UNK		e Huelme	2002	N/A		
		NK	UNK	ZFMK	50489	12s sequence from Schmitz
						et al. 2003 (AY195953)

© 2011 Blackwell Publishing Ltd

Kluge 1998). Prior to analysis, individual marker datasets were tested for the maximum likelihood model of evolution with jModelTest 0.1.1 (Posada 2008) and MrModelTest2.3 (Nylander *et al.* 2004) for a *C. niloticus*-only dataset and a dataset including *Crocodylus* outgroups. Where the inferred model of evolution was not consistent between datasets, we chose the model selected for the *C. niloticus*-only data. Datasets were tested for congruence and analyzed in PhyML (Guindon & Gascuel 2003) and MrBayes (Ronquist & Huelsenbeck 2003) to generate hypotheses of phylogenetic structure under maximum likelihood and Bayesian algorithms as follows:

Maximum likelihood. A PhyML search was implemented on the Montpellier Bioinformatics Platform (http:// www.atgc-montpellier.fr/phyml). The full, concatenated dataset was analyzed under HKY85+I+G substitution model as per the recommendation of jModelTest 0.1.1. Trees were searched from a starting tree created by BIONJ using the best of the SPR and NNI options with topologies and branch lengths optimized. Branch support was determined with both the SH-Like and Chi²based options of the Approximate Likelihood Ratio Test (aLRT) method (Anisimova & Gascuel 2006), as well as nonparametric bootstrapping over 100 replicates. To test the hypothesis of C. niloticus monophyly, we compared the resulting topology to a constrained tree compiled in MacClade4.01 (Maddison 1997) wherein C. niloticus represented a monophyletic group. Additional ML searches were conducted and the likelihood values for the constrained and unconstrained topologies were compared using the Shimoduro-Hasegawa option in PAUP4.0b10 (Swofford 2002). Statistical measures for rejection of the hypothesis of no difference were set at 95%.

Bayesian inference. The concatenated dataset was partitioned by gene region with the substitution model implemented for each gene (12s-HKY+I, 16s-GTR+G, dloop—HKY+I, ND4—GTR+G, WANCY-HKY, rag1-JC, OD-F81, TROP-F81, S6-F81, mtDNA-H-KY+I+G, nDNA—HKY+I) where all model parameters were estimated by MrModelTest2.3 (Nylander et al. 2004). Gaps (indels) were coded as restriction site binary characters. Three simultaneous Markov Chain Monte Carlo searches were run with five chains for 12 000 000 generations with trees sampled every 500 generations. A 50% majority rule consensus tree was created after discarding the first 2000 'burn-in' trees. Trees were rooted by both outgroup and mid-point rooting methods; both methods produced the same root point (Hess et al. 2007).

We used BEAST v1.5beta2 (Drummond *et al.* 2006), which implements a Bayesian MCMC method and a

relaxed molecular clock approach (Drummond 2007), to estimate divergence times. We assumed a relaxed lognormal model of lineage variation and a Yule prior for branching rates. We examined rates using the combined dataset (nuDNA and mtDNA) partitioned by gene region, as well as by coding versus non-coding regions. The coding regions were further partitioned according to 1 + 2 and 3 codon positions and the substitution model, rate heterogeneity and base frequencies were unlinked across codon positions [(1 + 2), 3].

For calibration, we used fossil record-based estimates of the divergence between Alligator and Crocodylus (ca. 79 mya), Crocodylus and Mecistops/Osteolaemus (at ca. 20-24 mya), as well as the earliest fossil appearances of C. niloticus in Africa (ca. 3-7 mya) (Brochu 2004c; Brochu personal communication), and Crocodylus in the Caribbean (conservatively estimated at 4-5 mya; Miller 1980). We used these dates as lognormal distribution priors for each respective node setting the offset as the minimum age (A. Drummond personal communication). We placed monophyly constraints on the New World clade and on eastern C. niloticus, respectively, thus attaining the same general topology as assessed by the full phylogenetic analyses. Three replicates were run for 100 000 000 generations each with tree and parameter sampling occurring every 1000 generations. The adequacy of a 10% burn in and convergence of all parameters were assessed using the software TRACER v1.4.1 (Rambaut & Drummond 2005). The sampling distributions of the three independent replicates were then combined using the software LogCombiner v1.5 and the resulting 360 000 000 samples summarized and visualized using the software Tree Annotator v1.5 and Fig-Tree v1.2 (Rambaut 2006).

Mean intra- and inter-clade distances (i.e. number of base substitutions per site from averaging over all sequence pairs within and between groups) were calculated in MEGA4 for both the combined and the mtDNA only datasets (Tamura et al. 2007). Sequences for captive individuals were removed from all analyses, and divergence estimates for pairs not including Alligator were estimated with the preceding datasets minus Alligator. Analyses were conducted using Maximum Composite Likelihood (Tamura et al. 2004). The rate variation among sites was modeled with a gamma distribution (shape parameter = 1). The differences in the composition bias among sequences were considered in evolutionary comparisons (Tamura & Kumar 2002). Codon included positions were 1st+2nd+3rd+Noncoding. All ambiguous positions were removed for each sequence pair. Standard error estimates were obtained by bootstrapping over 500 replicates.

Ancient DNA methods

Tissue was harvested from 57 dried or ethanol preserved museum specimens from eight institutions, including both natural history and anthroplogical collections (Table 2). We sampled Egyptian crocodile mummies from the Phoebe Hearst Museum (PHM) at the University of California, Berkley; the University of Pennsylvania Museum of Anthroplogy (UPenn); the British Museum (BM); and the Musée National d'Histoire Naturelle (MNHN) (Table S3, Supporting information). During all archival tissue collections, surgical utensils were sterilized and work areas were wiped with DNAaway (Molecular Bioproducts) between samples. Specimen surfaces were wiped with 20% Clorox bleach and air dried prior to sampling.

Mummified crocodile hatchlings from MNHN, PHM and UPenn were very fragile and handled separately. Individuals from MNHN were originally collected from two sealed tombs (Grotte de Samoun and Grotte de Thebes) in the early 1800s and are estimated to have been interred between 200 BC and 200 AD (S. Ikram, Cairo Museum, personal communication.). One hatchling from PHM was from collections noted as 'predynastic' Egypt (estimated ≥3100 BC), while one from Upenn was undated. For each hatchling a cross section of the tail, including bone and muscle tissue, was sampled, rinsed with 20% Clorox bleach and sterile water prior to hydration in glycine buffer for 1 week to 3 months with regular fluid changes (Shedlock et al. 1997). Samples from adult mummies and more recent specimens (nineteenth and twentieth centuries), were soaked for 36-76 h in PBS with multiple fluid changes.

All museum samples were processed in clean room facilities, separate from contemporary samples. Processing of each specimen was replicated in at least one additional institution [either American Museum of Natural History aDNA Laboratory (AMNH), University of Nevada Reno (UNR), U.S. EPA aDNA Laboratory, Cincinnati, OH (EPA), or Tulane University (TU)]. At each institution DNA extraction, PCR setup and post-PCR handling of archival samples took place in physically separate locations with procedures following precautionary protocols recommended for use with degraded or ancient DNA (Cooper & Poinar 2000; Paabo et al. 2004; Gilbert et al. 2005; Willerslev & Cooper 2005). Facilities at AMNH and EPA were equipped with positive air pressure, wall mounted UV lamps, protective disposable lab attire, and direct shipping of all equipment and reagents, while those at TU and UNR consisted of separate, dedicated lab space.

DNA extraction from archival museum specimens consisted of a modified Qiagen DNeasy tissue protocol after extended hydration in either PBS or Glycine buffer. All samples were handled in batches of 6 with the exception of mummies, which were processed as batches 'per institution' of 4–8 samples. Negative controls were included throughout the process for each batch of samples. During tissue digestion, 5 μ L of 1 M dithiothreitol (DTT) was added along with proteinase K to enhance protein digestion. Care was taken to mix reagents by hand at each step rather than risk shearing the DNA by vortexing. Samples were eluted in two separate volumes of 75 μ L with elution buffer warmed to 56 °C after resting in the column for 15 min.

All pre- and post PCR handling was physically separated, and involved use of both positive and negative controls. Positive PCR controls were added after archival tubes were sealed and placed on the thermocycler. Primers were designed from modern crocodile sequences to amplify ±187–200 bp each of mitochondrial 12s rRNA and d-loop gene regions covering previously identified hypervariable sites (12s183 5'TTGCCCT AAGCAGCCTGTAT3', 12s375 5'CCGTCTTTGACAGTC CTGGT3'; and ncdlpFs 5'GCCGACATTCTTATTAAAC-TAC3', ncdlpRs 5'GCAGATAAATGAATGCCTTAT3', Table S1). In addition, we attempted to amplify a 600 bp gene region using crocodile specific 12s primers to confirm that no contemporary DNA was present in aDNA extracts (Paabo *et al.* 2004).

Template DNA was amplified using GE Illustra puretaq PCR beads in 25 µL volumes and amplification products were visualized on a 1% agarose gel with EtBr staining. Successfully amplified PCR products were using ExoSAP-IT[®] (Affymetrix). cleaned Sanger sequencing reactions were carried out using BigDye v3.1 sequencing kits in 6-8 µL volumes. Gene regions were sequenced in both directions on either an ABI 3100, 3700 or 3730XL automated capillary sequencer. Base calling was performed with Sequencher v4.1 (Genecodes Corp.). In case of sequence ambiguity, archival tissue samples were re-extracted, amplified and sequenced up to three times for verification (Paabo et al. 2004).

Historical specimen sequence analyses

Both 12s and d-loop sequences from archival specimens were individually aligned with sequences from contemporary specimens. Assignment of each archival specimen to an evolutionary lineage was based on diagnostic characters found in sequences from contemporary specimens. Nucleotide sites were considered diagnostic if they were variable with fixed base differences between clades. We utilized a PAA (Davis & Nixon 1992) approach to assign historical specimens to clades with the program CAOS (Character Attribute Organization System; Sarkar *et al.* 2009). As an exploratory measure, we performed a phylogenetic analysis of the aligned short fragment sequence data using a maximum likelihood approach as implemented in PhyML with the substitution model implemented HKY+I, as previously estimated by jModelTest 0.1.1 (Posada 2008).

Karyotyping

Samples for karyotype analysis were collected from Nile crocodiles at the St. Augustine Alligator Farm Zoological Park and had the following accession numbers: SAAF_1—93220, SAAF_edpool—A01026, and SAAF_2—93044. Karyotyping was conducted on four cell lines. Skin biopsies were taken from the toe webbing of captive individuals and primary fibroblast cell lines were established and preserved in the San Diego Zoo's Frozen Zoo[®] cell repository. Harvests and chromosome banding followed Kumamoto *et al.* (1996) with the exception of a 33 °C cell culture incubation temperature. We also obtained DNA sequence data from these indi-

viduals, following the protocols for contemporary specimens presented above, for comparison to natural populations and to address concerns about potential hybridization in captivity.

Results

All phylogenetic methods used to examine our combined mtDNA and nDNA sequence dataset recovered a paraphyletic *C. niloticus*, with a predominantly western African clade sister to a monophyletic clade comprised of a predominantly eastern African *C. niloticus* plus the four New World *Crocodylus* species (Fig. 2). Tree topologies with significantly weaker support values were recovered when *C. niloticus* monophyly was imposed. Mean, corrected sequence divergence estimates showed little intraclade divergence (<0.3%) for both the total, concatenated dataset and the mtDNA dataset in both *C. niloticus* clades (Table S2, Supporting information). Mean intraclade divergence estimates between the eastern and western clades did not overlap with mean

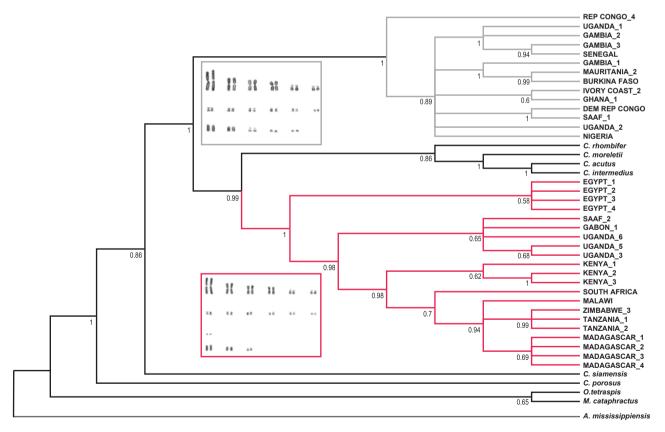


Fig. 2 Phylogenetic tree illustrating results of the Bayesian analysis of the full dataset, with karyotype insets. As illustrated, both the phylogenetic and karyotype analyses support a paraphyletic *C. niloticus* with the predominantly western clade (light grey) as sister to a monophyletic New World and Eastern *C. niloticus* clade. Posterior Probabilities (PP) are indicated above branches. Significant support is indicated by PP > 0.90. Individuals SAAF_1, SAAF_P (western) and SAAF_2 (eastern) exhibit the karyotypes displayed in the insets. Both BY and ML analyses resulted in similar tree topologies.

interclade divergence values, which were more than an order of magnitude higher (>4%), for both the total concatenated dataset and the mtDNA dataset (Table S2).

Karyotyping of representative captive individuals from each clade affirmed sequence-based evidence of evolutionary divergence between the two *C. niloticus* lineages (Fig. 2, inset). Consistent with prior findings, the derived eastern *C. niloticus* clade exhibits 32 chromosomes, comprised of 26 metacentric-submetacentric and six acrocentric elements. The ancestral western *C. niloticus* clade exhibits 34 chromosomes consisting of 24 metacentric–submetacentric and 10 acrocentric elements.

Divergence time estimates from the BEAST analyses of the full dataset partitioned by gene and partitioned by coding region and codon position were similar (i.e. the mean estimated dates from one analysis fell within the 95% confidence intervals of the other analysis), though mean ages were generally older and the confidence intervals were larger when the data were partitioned by gene region. Hence, we report only the outcome of the analysis based on coding region and codon position. Divergence time estimates suggest that the western C. niloticus lineage last shared a common ancestor with the New World-Eastern C. niloticus clade approximately 8.13 mya (5.24-12.64 mya, 95% CI tmrca) (Fig. S1, Supporting information). The western clade was estimated to have arisen ca. 2.455 mya (0.903-4.722 mya, 95% CI tmrca) (Fig. S1). The eastern C. niloticus lineage was estimated to have last shared a common ancestor with the New World clade approximately 5.7 mya (3.69-8.44 mya, 95% CI tmrca) (Fig. S1).

We sequenced up to 197 bp of the 12s rRNA and up to 219 bp of the dloop from mtDNA regions for 40 of 57 museum specimens (Table 2). We were able to obtain sequence data for 8 of 22 crocodile mummies. Only the mummified hatchlings from MNHN yielded DNA (Table S3). Our attempts to amplify the larger 12s fragment in the mummy and other museum specimens failed, indicating that there was no contamination with contemporary crocodile DNA. An alignment of the short 12s and d-loop sequences from contemporary specimens found 11 and 14 diagnostic sites, respectively, for the two C. niloticus clades (Table 3). Comparison of sequences obtained from the historical specimens to these diagnostic sites enabled us to assign 24 individuals, including all 8 mummy sequences, to the western clade and 16 individuals to the eastern clade (Fig. 1, Table 3). Phylogenetic analysis of the short aDNA dataset recovered a western clade including all mummies and placement of all other museum specimens consistent with the haplotype based clade assignment (Fig. S2, Supporting information).

Haplotype assignments of mummy specimens and well documented collections from the Sudanese Nile valley indicate that the two lineages of *C. niloticus* have had overlapping distributions in the Nile drainage for nearly two millennia (Fig. 1b, Table 3). In addition, derived eastern haplotypes were recovered from two historical specimens from coastal Senegal. Contemporary distributions suggest that little geographical overlap now occurs (Fig. 1a). For example, all contemporary Egyptian specimens possess derived haplotypes, whereas no derived eastern haplotypes have been found in contemporary populations thus far sampled in West Africa.

Discussion

Our total evidence based phylogenetic analysis revealed a cryptic evolutionary lineage within the Nile crocodile. This finding not only clarifies recent and historic disputes regarding both *C. niloticus'* taxonomy and the biogeographic history of the genus, but also stands to improve conservation and management of crocodilian diversity across Africa and elsewhere.

Crocodylus diversity and taxonomy

Extant crocodiles are often portrayed as 'living fossils,' reflecting perceptions of morphological homogeneity and evolutionary stasis, but evidence of greater crocodilian diversity and evolutionary dynamism is beginning to emerge. Eaton *et al.* (2009), for example, has found cryptic diversity within the African dwarf crocodiles of the genus *Osteolaemus*. Our results also indicate that greater diversity occurs within the crown genus *Crocodylus* than is currently recognized.

Recognition of subspecies (e.g. Fuchs et al. 1974) does not adequately reflect the degree or nature of divergence between the two recovered C. niloticus clades. Our findings show that the two C. niloticus lineages are distant relatives, and their paraphyletic relationship relative to New World congeners indicates that the two C. niloticus clades are not sister taxa. Additionally, fixed differences across sequence-based marker sets and chromosomes, as well as interclade distances, offer a basis for diagnosing the two C. niloticus lineages as distinct species (Moritz 1994; Goldstein & DeSalle 2000). Although molecular divergence estimates between members of the genus Crocodylus vary by clade and marker, recognized Crocodylus species generally exhibit <1% intraspecies divergence and 2.5-7.5% interspecies divergence (White & Densmore 2001; McAliley et al. 2006). Similarly, newly diagnosed species within the genus Osteolaemus exhibit within-clade divergence of <0.4% and between-clade divergences of 4-16%,

CRYPTIC AFRICAN CROCODYLUS SPECIES REVEALED 11

Table 3 Population Aggregation Analysis (PAA) Assigning Archival Specimens to Western or Eastern Clade. Diagnostic nucleotide positions within the short 12s (11 sites) and d-loop (14 sites) sequences. Specimens in bold represent archival material. Eight mummy specimens are highlighted in grey, all correspond to the western lineage. Sequences with question marks across one marker represent failed amplification success for that specimen. D-loop site 206 is an indel event in the eastern clade. The miscoding error observed at d-loop site 226 due to DNA degradation

	Gene region						12s												dle	oop						
	position	187	193	204	206	209	221	225	229	258	274	303	121	122	128	147	156	201	203	206	209	223	226	227	234	240
Western	Consensus	А	G	А	С	С	А	С	А	Т	С	G	А	Т	Т	С	А	Т	А	А	А	Т	С	Т	С	Т
	SAAFedpool BURKINAFAS																			-						
	DRCONGO	·	•	•	•	•	·	•	·	•	•	•	· ?	?	?	2	· ?	?	?	?	2	•	•	•	•	•
	GHANA	•	•	•	·	·	•	·	•	·	·	·	:	-	:	:	:	:	-	•	-	•	•	•	•	·
	GAMBIA	•	•	•	·	·	•	·	•	·	·	·	•	·	•	·	•	•	·	_	•	•	•	•	•	·
	GAMBIAA	·	•	•	•	•	·	•	·	•	•	•	·	•	·	•	·	•	·	_	•	•	•	•	•	•
	GAMBIAA GAMBIAB	•	·	•	•	·	•	•	•	•	•	•	•	·	•	·	•	•	•	_	•	•	•	•	•	•
	IVORYCOAST	•	·	•	•	·	•	•	•	•	•	•	•	·	•	·	•	•	•	_	•	•	•	•	•	•
		·	•	·	·	·	•	·	·	·	·	·	·	·	·	•	·	•	•	_	•	·	·	·	•	·
	MAURITANIA	·	•	·	·	·	·	·	·	·	·	•	•	·	•	•	•	•	•	-	•	·	·	·	•	·
	NIGERIA	·	•	·	·	•	·	•	·	·	·	•	•	•	•	•	•	•	•	-	•	•	•	•	•	•
	SENEGAL	·	•	·	·	•	·	•	·	·	·	•	•	·	•	•	•	•	•	-	•	•	•	•	•	•
	RCONGO	·	•	•	•	•	•	·	•	•	•	·	?	?	?	•	•	•	•	·	•	С	•	•	•	•
	KARAMOJAA	•		•			•	•	•	•	•	•	•		•		•			-	•	•	•	•		•
	KARAMOJAB											•	•		•	•	•	•	•	-						
	MummyHaute																			-		С				
	MummySamA																			-		С				
	MummySamB	?	?	?	?	?	?	?	?	?	?	?								-		С	Т			
	MummySamC	?	?	?	?	?	?	?	?	?	?	?								-		С				
	MummySamD	?	?	?	?	?	?	?	?	?	?	?								-		С				
	MummyThebA	?	?	?	?	?	?	?	?	?	?	?								_		С	Т			
	mummyThebB																			_		С		· .		
	mummyThebC																			_		С				
	Benin1990												?	?	?	?	?	?	?	?	?	?	?	?	?	?
	SanghaCAR																			_		С				
	Chad1993												?	?	?	?	?	?	?	?	?	?	?	?	?	?
	DRCEdz1986	•				•		•	•	•	•	•			•	•	•	•	•	_	•	Ċ	•	•	•	
	DRCLukuelu	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	_	•	C	•	•	•	•
	DRCKas1924	•	•	•	•	•	•	•	•	•	•	•	?	?	?	?	?	?	?	?	?	?	?	?	?	?
	CIAssi1885	•	•	·	•	•	•	•	•	•	•	•	?	?	?	?	?	?	?	?	?	?	?	?	?	?
	RCNgou1886	•	•	·	·	•	•	•	•	•	•	•	•	•	•	•	•	•	•	·	•	Ċ	•	•	•	•
	Matmat1993	•	•	•	•	·	•	·	·	·	·	·	·	•	·	·	·	•	•	_	•	C	•	•	•	•
		•	·	•	•	·	·	•	•	•	•	•	•	·	•	·	•	•	•	_	•	C	•	•	•	•
	DRCNE1911	•	•		•	•	•	•	•	•	•	•	·	·	·	·	·	•	•	_	•	С	•	•	•	•
	Oubang1986	?	? ?	·	·	·	·	·	•	•	_	•	•	•	•	•	•									
	Senega1824	?	:	:	-	:	:	:	?	?	?	?	·	·	·	·	·	•	•	_	•	·	·	·	•	•
	Senega1825	·	•	·	·	·	·	·	·	·	·	•	•	•	•	•	•	•	•	_	•	•	•	•	•	•
	SudMel1922	·	•	•	·	·	•	·	·	·	·	·	?	?	?	?	?	?	?	?	?	?	?	?	?	?
	SudWNA1922	·	•	•	•	·	·	•	·	•	•	•	?	?	?	?	?	?	?	?	?	?	?	?	?	?
	SudWNB1922	•	•	•	•	•	•	•	•	•	•	•	?	?	?	?	?	?	?	?	?	?	?	?	?	?
_	Senaga1934	·	·	•	•	·	·	·	•	·	·	•	?	?	?	?	?	?	?	?	?	?	?	?	?	?
Eastern	Consensus	Т	А	G	А	Т	Т	Т	G	А	Т	А	G	С	С	•	G	А	G	С	G	G	•	С	Т	С
	SAAF2	Т	А	G	А	Т	Т	Т	G	А	Т	А	G	С	С		G	А	G	С	G	G		С	Т	С
	GABONa	Т	А	G	А	Т	Т	Т	G	А	Т	А	G	С	С		G	А	G	С	G	G		С	Т	С
	NASSERA	Т	А	G	А	Т	Т	Т	G	А	Т	А	G	C	C		G	А	G	С	G	G		C	Т	C
	NASSERB	T	A	G	A	T	T	T	G	A	Ť	A	G	C	C		G	A	G	C	G	G		C	T	C
	NASSERC	T	A	G	A	T	T	T	G	A	T	A	G	C	C		G	A	G	C	G	G		C	T	C
	NASSERD	T	A	G	A	Т	T	T	G	A	T	A	G	C	C		G	A	G	C	G	G		C	Т	C
	MADAGASCNW		A	G	A	T	T	T	G	A	T	A	G	C	C		G	A	G	C		G	•	C	T	C
	MADAGASCNW	T	A		A	T	T	T	G	A	T	A			C	•	G		G	C	·	G	·	C	T	C
	MINDAGASCSE	T	А	G	А	1	1	1	G	Α	1	А	G	C	C	•	G	А	G	C	·	G	·	C	1	C

12 E. HEKKALA ET AL.

Table 3 (Continued)

Gene region						12s												dlo	oop						
position	187	193	204	206	209	221	225	229	258	274	303	121	122	128	147	156	201	203	206	209	223	226	227	234	240
MADAGASCAA	Т	А	G	А	Т	Т	Т	G	А	Т	А	G	С	С		G	А	G	С		G		С	Т	С
MADAGASCAB	Т	А	G	А	Т	Т	Т	G	А	Т	А	G	С	С		G	А	G	С		А		С	Т	С
SAFRICA	Т	А	G	А	Т	Т	Т	G	А	Т	А	G	С	С		G	А	G	С		А		С	Т	С
KENYAA	Т	А	G	А	Т	Т	Т	G	А	Т	А	G	С	С		G	А	G	С	G	G		С	Т	С
KENYAB	Т	А	G	А	Т	Т	Т	G	А	Т	А	G	С	С		G	А	G	С		G		С	Т	С
KENYAC	Т	А	G	А	Т	Т	Т	G	А	Т	А	G	С	С		G	А	G	С	G	G		С	Т	С
QUEENNP02	?	?	?	?	?	?	?	?	?	?	?	G	С	С		G	А	G	С	G	G		С	Т	С
MURCHISON2	?	?	?	?	?	?	?	?	?	?	?	G	С	С		G	А	G	С	G	G		С	Т	С
LAKEMBURO2	?	?	?	?	?	?	?	?	?	?	?	G	С	С		G	А	G	С	G	G		С	Т	С
ZIMBABWE	Т	А	G	А	Т	Т	Т	G	А	Т	А	G	С	С		G	А	G	С		А		С	Т	С
TANZANIAA	Т	А	G	А	Т	Т	Т	G	А	Т	А	G	С	С		G	А	G	С		А		С	Т	С
TANZANIAB	Т	А	G	А	Т	Т	Т	G	А	Т	А	G	С	С		G	А	G	С		А		С	Т	С
MALAWI	Т	А	G	А	Т	Т	Т	G	А	Т	А	G	С	С		G	А	G	С		G		С	Т	С
Sudan	Т	А	G	А	Т	Т	Т	G	А	Т	А	?	?	?	?	?	?	?	?	?	?	?	?	?	?
Nasser	Т	А	G	А	Т	Т	Т	G	А	Т	А	?	?	?	?	?	?	?	?	?	?	?	?	?	?
Kariba1	Т	А	G	А	Т	Т	Т	G	А	Т	А	?	?	?	?	?	?	?	?	?	?	?	?	?	?
Kariba2	Т	А	G	А	Т	Т	Т	G	А	Т	А	?	?	?	?	?	?	?	?	?	?	?	?	?	?
DRCNE1912	Т	А	G	А	Т	Т	Т	G	А	Т	А	G	С	С	С	G	А	G	С	G	G		С	Т	С
Botswa1967	?	?	?	А	Т	Т	Т	G	А	Т	А	?	?	?	?	?	?	?	?	?	?	?	?	?	?
SWCam1966	Т	А	G	А	Т	Т	Т	G	А	Т	А	?	?	?	?	?	?	?	?	?	?	?	?	?	?
KenGar1960	Т	А	G	А	Т	Т	Т	G	А	Т	А	?	?	?	?	?	?	?	?	?	?	?	?	?	?
KenNai1919	?	?	G	А	Т	Т	Т	G	А	Т	А	?	?	?	?	?	?	?	?	?	?	?	?	?	?
MadAmA1931	Т	А	G	А	Т	Т	Т	G	А	Т	А	?	?	?	?	?	?	?	?	?	?	?	?	?	?
MadAmB1931	Т	А	G	А	Т	Т	Т	G	А	Т	А	?	?	?	?	?	?	?	?	?	?	?	?	?	?
MadAMC1931	?	?	G	А	Т	Т	Т	G	А	Т	А	?	?	?	?	?	?	?	?	?	?	?	?	?	?
madTYP1885	Т	А	G	А	Т	Т	Т	G	А	Т	А	G	С	С		G	А	G	С		G		С	Т	С
vulTYP1822	Т	А	G	А	Т	Т	Т	G	А	Т	А	G	С	С	Т	G	А	G	С	G	G		С	Т	С
VerTYP1768	Т	А	G	А	Т	Т	Т	G	А	Т	А	?	?	?	?	?	?	?	?	?	?	?	?	?	?
Senega1803	Т	А	G	А	Т	Т	Т	G	А	Т	А	G	С	С	Т	G	А	G	С	G	G		С	Т	С
SudWNC1922	Т	А	G	А	Т	Т	Т	G	А	Т	А	?	?	?	?	?	?	?	?	?	?	?	?	?	?
SudWND1922	Т	А	G	А	Т	Т	Т	G	А	Т	А	?	?	?	?	?	?	?	?	?	?	?	?	?	?
SunWNE1922	Т	А	G	А	Т	Т	Т	G	А	Т	А	?	?	?	?	?	?	?	?	?	?	?	?	?	?
SudUN1922	Т	А	G	А	Т	Т	Т	G	А	Т	А	?	?	?	?	?	?	?	?	?	?	?	?	?	?
Tanz1972	Т	А	G	А	Т	Т	Т	G	А	Т	А	?	?	?	?	?	?	?	?	?	?	?	?	?	?

depending on the marker (Eaton *et al.* 2009). In comparison, the two *C. niloticus* clades exhibited 0.3% withinclade and 4% between-clade divergence across 5 kbp (Table S2). Preliminary morphometrics of *C. niloticus* from museum collections representing sites from Kenya and the Congo showing fixed, discrete and non-overlapping continuous character variation (R. Sadlier, unpublished data) also support this conclusion.

That all mummy crocodiles from Thebes and Samoun exhibit the western haplotype suggests both lineages historically occurred in the lower Nile River (Fig. 1). These findings are consistent with early arguments of two *Crocodylus* species in Egypt, including historical accounts that ancient Egyptian priests were cognizant of two forms and selectively used the smaller, more tractable form in temples and ceremonies (Herodotus in Geoffroy Saint-Hilaire 1807). Analysis of museum specimens from more recent collections (Fig. 1b, Table 2) provides additional evidence that both lineages were present in the upper Nile in Sudan until as recently as the 1920s.

Molecular assignment of the eight crocodile mummies to the western *C. niloticus* clade and Geoffroy Saint-Hilaire's (1807) description of a mummified crocodile skull from the same cache as a separate species, *C. suchus*, provides support for ascribing the western *C. niloticus* lineage to this taxon. The description of *C. suchus* included the argument, disputed by Cuvier at the time (Cüvier 1807), that both *C. niloticus* and *C. suchus* were present in the Nile and that the range of *C. suchus* likely extended into the western Sahara (Geoffroy Saint-Hilaire 1807). Geoffroy Saint-Hilaire (1807) went so far as to argue that the distribution of both species likely overlapped in areas of ancient Lake Chad during geologic times.

Crocodylus biogeography and conservation

Evidence for cryptic diversity within C. niloticus provides key information on the evolution and distribution of the genus Crocodylus. Fossils of Crocodylus checchiai in Libya (ca. 5-6 mya) (Brochu 2001, 2003) and the Gargano Crocodylus sp. (ca. 5-6 mya) of southeastern Italy (Delfino et al. 2007) provide evidence of dispersal and diversification within the genus in north Africa and the Mediterranean after the Miocene-Pliocene transition. In light of the fossil record (e.g. Brochu 2003) and estimated divergence dates based on our molecular data, our well-supported phylogenetic hypothesis of a paraphyletic C. niloticus bracketing New World congeners provides further support for the hypothesis that the global distribution of Crocodylus reflects geologically recent marine and transoceanic dispersal events (Brochu et al. 2007; Willis 2009; Meredith et al. 2011; Oaks 2011). These findings are consistent with hypothesized transoceanic marine dispersal in other taxa including geckos and parrots (e.g. de Queiroz 2005).

While our divergence estimates are preliminary and partially based on uncertainties in the fossil record for C. niloticus in Africa (C. Brochu personal communication), the pattern of divergence we recovered is consistent with many well recognized aspects of African biogeography. The position of Congo Basin samples as basal within the western lineage, and preliminary divergence estimates dating to 8.13 mya for the most recent common ancestor of the western and eastern (including New World species) clades, suggest that the newly identified African Crocodylus lineage evolved in the interior of Central Africa during the late Miocene when the closing of the Tethys Sea brought about the climatic trend of increasing aridity we see on the continent today (Axelrod & Raven 1978; Coetzee 1993; Plana 2004). Increasing aridity resulted in the recession of forested areas and the advancement of savannah and woodlands with associated sandy shores necessary for nesting. The contemporary and historical presence of the western lineage at the northeastern margin of the Congo Basin, the Kidepo Valley in northeastern Uganda, and the Sangha River drainage in Central African Republic indicate that dispersal may have begun in a northerly direction and then along an east-west axis facilitated by drainage evolution (Goudie 2005; Drake et al. 2011). Further divergence in the western clade occurred throughout the mid to late Pleistocene (0.035–1.43 mya) likely owing to the gradual drying of the 'green Sahara' and subsequent population isolation (Drake et al. 2011). During this period, a series of alluvial fans and paleolakes effectively connected the Niger Delta (including the Senegal River) to the Nile basin largely through what was Mega Lake Chad and what is now the Sudd wetland in southern Sudan (Drake *et al.* 2011). Relict populations and rock paintings indicate that crocodile populations were more abundant across northern Africa during wetter climatic periods (de Smet 1999; Shine *et al.* 2001; Drake *et al.* 2011).

Within-lineage genetic structure provides more detailed understanding of connectivity across western Africa. One of the two clades recovered within the western lineage consists largely of Sahelian localities structured by the drying of paleodrainages towards the end of the Pleistocene (Drake et al. 2011) (Fig. S1). The other clade is composed of localities in the Upper Guinea Forest Basin countries (e.g. Nigeria, Ghana, Cote d'Ivoire), as well as coastal localities in Senegal and Gambia (Fig. S1). River drainages in this region run north to south draining into the Gulf of Guinea or Atlantic Ocean, and therefore have had little connection with paleodrainages of the Sahara. The observed phylogenetic structure also likely reflects drainage isolation with infrequent marine dispersal, a pattern seen in some coastal fishes (e.g. Falk et al. 2003; Agnese et al. 2006). Nile crocodiles are abundant in coastal lagoons in this region and are regularly observed in marine environments (Shirley et al. 2009; Fergusson 2010).

Similarly, the eastern clade of C. niloticus is broken into two sister groups dating to around 3.274 mya with likely origins in the Nile valley. Prior analyses of eastern populations based on nuclear markers revealed substantial sub-structuring corresponding to major barriers to dispersal such as the Mozambique Channel (East Africa and Madagascar), and to river drainages in Kenya, Tanzania, Zimbabwe and South Africa (the Turkana, Ruaha, Zambezi and Limpopo river basins, respectively) (Hekkala et al. 2009). It is possible that the geographic structure exhibited by eastern C. niloticus may be related to patterns of natal philopatry-associated breeding and nesting behaviors (Hekkala et al. 2009). Similar patterns of sub-structuring by drainage basin have been observed in faunal assemblages found in East African forest remnants (Azeria et al. 2007).

Our recovery of the eastern haplotype in two samples from western Central Africa (i.e. the Ogooué Basin—Gabon and Cameroon) likely reflects northward dispersal from coastal Angola and the Kunene River. The Cameroon Volcanic Line is a major biogeographic feature separating this region from coastal West Africa (Cantagrel *et al.* 1978; Lee *et al.* 1994; Meyers *et al.* 1998), and a similar pattern occurs in the Osteolaemus dwarf crocodiles (Eaton *et al.* 2009).

On a continental scale, the cryptic east/west split found in our study of African *Crocodylus* parallels patterns of differentiation observed between sister taxa in several African faunal assemblages following the formation of the Rift Valley (de Menocal 2004; Moodley & Bruford 2007). However, the geographic distributions of

the ancestral and derived lineages (Fig. 1a, b) belie a history of greater sympatry in Africa. The occurrence of the derived lineage in historical specimens from Senegal suggests the possibility of either greater sympatry in western Africa in the past or a pattern of coastal dispersal by the Eastern lineage, though no contemporary specimens from West Africa to date, coastal or otherwise, support either argument (Fig. 1). Individuals from historical collections from the Sudanese Nile valley (1822-1922) and northeastern DRC (1911-1912) also possess both lineages. While further sampling in Sudan and NE DRC is needed to determine the extent of sympatry today, the presence of the western clade in the Kidepo Valley (Uganda) and anecdotal evidence of similar crocodile populations in Ethiopia suggests that the western clade is still distributed in this region though it may be restricted to marginal habitats.

Previously, researchers using molecular data from paleontological collections have shown evidence that genetic diversity in wide ranging species has been lost over historical and paleoecological time periods (Ramakrishnan & Hadley 2009 and references therein). This growing field has been termed 'phylochronology' due to the emphasis on reconstructing patterns of genetic variation over time. Much of this work has focused on Holocene patterns of faunal turnover and range contractions in northern latitudes (Ramakrishnan & Hadley 2009; examples therein, e.g. Shapiro et al. 2004; Hofreiter et al. 2004). While these studies are invaluable in advancing understanding of the genetic consequences of environmental change, our study reveals a much more recent pattern of local extirpation with potentially global consequences for loss of crocodilian biodiversity.

Conclusion

This study emphasizes once again the utility of nontraditional archival specimens in contributing to our understanding of evolutionary relationships and biogeographic history (Leonard 2008). As techniques for accessing nucleic acids from archival materials become more readily and reliably available, materials found in ever more diverse repositories stand to provide greater insight into changes over time related to natural and anthropogenic processes. Our success in accessing DNA from archival materials adds to the growing body of work demonstrating the role of museum collections as banks of 'ancient' DNA that can be used to establish baseline genetic profiles against which change can be measured (Leonard 2008; Ramakrishnan & Hadley 2009 and references therein). However, use of archival materials is not without risk (Cooper & Poinar 2000). Many researchers examining genetic characteristics of paleomaterial have difficulty retrieving and authenticating ancient DNA. The mummified crocodile hatchings, with the exception of the 'pre-dynastic' hatchling from PHM, proved to be an exceptional source for ancient DNA. The specimens came from dry, sealed, relatively cool burial chambers and are young (only 1 800–2 200 years old) in comparison to source materials used in many other ancient DNA studies (e.g. Hofreiter *et al.* 2004; Shapiro *et al.* 2004). Importantly, our samples have two additional, uniquely crocodilian advantages over samples comprised of mammalian bone and mummy tissue: nucleated red blood cells and a thick keratinized skin layer. Both of these attributes likely serve as sources and protective repositories for mtDNA.

Our combined analyses of museum and contemporary specimens indicate that, as formulated, major national and international conservation agreements intended to promote sustainable harvest of Nile crocodiles may instead accelerate extirpation because quotas and translocation policies are based on erroneous taxonomy and assumptions of genetic homogeneity. This is particularly relevant in countries that harbour populations of both lineages and have long running harvest programs (e.g. Uganda) or are looking to initiate new harvest programs (e.g. Ethiopia and Sudan). The newly discovered evolutionary lineage of African Crocodylus is particularly vulnerable to extinction because of its relative rarity and restricted occurrence in countries where illegal harvest of skins, the bushmeat trade, and damage to wetlands are largely unregulated (Shirley et al. 2009). Taking precautionary measures, such as recognizing the ancestral lineage as C. suchus on the IUCN Red List and reviewing its status, could reduce further loss of at-risk populations.

Acknowledgements

We thank the wildlife and CITES management authorities of Ghana, Cote d'Ivoire, Senegal, Gambia, Nigeria, Gabon, Republic of Congo, Egypt, Uganda, Kenya, Tanzania, Zimbabwe and Madagascar for permission to collect and export samples. Funding was provided by the University of Florida, Wildlife Conservation Society, The Sackler Institute for Conservation Genetics, Columbia University, Conservation, Food, and Health Foundation, Columbus Zoo, Idea Wild, Conservation Leadership Programme, St. Augustine Alligator Farm Zoological Park, Disney Wildlife Conservation Grant, US EPA Star Fellowship, and the Zoological Society of San Diego. We thank M.J. Eaton, R. Fergusson, T. Shine, W. Boehme, M.P.O. Dore, M. Klemens, A. Leslie, G. Garcia and the St. Augustine Alligator Farm Zoological Park for providing contemporary samples, and the California Academy of Sciences (J. Vindum), American Museum of Natural History, Field Museum, Royal Museum for Central Africa, Musée National du Histoire Naturelle (R. Bour), and Yale Peabody Museum (J. Gauthier) for permission to collect tissue from museum specimens. Christopher Raxworthy and Salima Ikram provided insight into historical biogeography and animal mummies, respectively. We thank E. Derryberry for her assistance with BEAST analyses and three anonymous reviewers for suggested improvements to the work.

Author contributions

EH and MHS, who contributed equally to this work and are considered co-primary authors, designed the study, and conducted all lab work and phylogenetic analyses. EH collected samples from Madagascar and conducted all museum sampling and aDNA work. MHS collected all samples from Ghana, Cote-d'Ivoire, Senegal, Gambia, Uganda and Egypt. GA and RD, and JDA are the dissertation supervisors of EH and MHS, respectively, and contributed to the development of methods and provided funding support. JT was an avid conservationist and the MSc advisor for MHS. He contributed significantly to our understanding of the taxonomic history of Nile crocodiles, sampling strategy, design of fieldwork, and funding support. SC and MH conducted all karyotype analyses. KV contributed to the karyotype analysis of captive animals. MB contributed analytical expertise and lab support. Sampling protocols were reviewed by the University of Florida IACUC (#E-423).

References

- Agnese J-F, Zentz F, Legros O, Sellos D (2006) Phylogenetic relationships and phylogeography of the Killifish species of the subgenus *Chromaphyosemion* (Radda, 1971) in West Africa, inferred from mitochondrial DNA sequences. *Molecular Phylogenetics and Evolution*, 40(2), 332–346.
- Anisimova M, Gascuel O (2006) Approximate likelihood ratio test for branches: a fast, accurate and powerful alternative. *Systematic Biology*, **55**, 539–552.
- Axelrod DI, Raven PH (1978) Late cretaceous and tertiary vegetation history of Africa. In: *Biogeography and Ecology of Southern Africa* (ed. Werger JA), pp. 77–130. Junk, The Hague.
- Azeria ET, Sanmartin I, Ås S, Carlson A, Burgess N (2007) Biogeographic patterns of the East African coastal forest vertebrate fauna. *Biodiversity and Conservation*, **16**(4), 883– 912.
- Baikie B (1857) On the species of *Crocodilus* inhabiting the rivers Kwóra and Bínuë (Niger and Tsadda) in Central Africa. *Proceedings of Zoological Society of London*, **25**, 48–50.
- Boettger O (1877) Die Reptilien Und Amphibien von Madagascar. Christian Winter, Frankfurt.
- Bory de Saint-Vincent (1824) Dictionnaire classique d'histoire naturelle. Part 5. Rey & Gravier, Paris.
- Brazaitis P (1973) Identification of Living Crocodilians. Zoologica. Zoological Society, New York, pp. 59–100.
- Brochu CA (2000) Phylogenetic relationships and divergence timing of Crocodylus based on morphology and the fossil record. *Copeia*, **3**, 657–673.
- Brochu CA (2001) Congruence between physiology, phylogenetics, and the fossil record on crocodylian historical biogeography. In: *Crocodilian Biology and Evolution* (eds Grigg G, Seebacher F, Franklin CE), pp. 9–28. Surrey Beatty and Sons, Sydney.

- Brochu CA (2003) Phylogenetic approaches toward crocodilian history. *Annual Review of Earth and Planetary Sciences*, **31**, 357–397.
- Brochu CA, Nieves-Rivera AM, Velez-Juarbe J, Daza-Vaca JD, Santos H (2007) Tertiary endemic crocodylians in the West Indies? *Geobios*, 40, 51–59.
- Cantagrel J, Jamond C, Lassere M (1978) Le magmatisme alcalin de la ligne du Cameroun au Tertiaire inferieur: données géochronologiques K/Ar. *Comptes Rendus Sommaire de la Société Géologique de France*, **6**, 300–303.
- Coetzee JA (1993) African Flora since the Terminal Jurassic. In: *Biological Relationships between Africa and South America* (ed. Goldblatt P), pp. 37–61. Yale University Press, New Haven.
- Cooper A, Poinar HN (2000) Ancient DNA: do it right or not at all. *Science*, 289, 1139.
- Cretzschmar PJ (1826) Atlas zu der reise im nördlichen Afrika, von Eduard Rüppell. 1. Abth. Zoologie. Hrsg. von der Senkenbergischen Naturforschenden Gesellschaft. H. L. Brönner, Frankfurt am Main.
- Cüvier GL (1807) Sur les différentes espèces de crocodiles vivants et sur leurs caractères distinctifs. *Annales du Muséum National d'Histoire Naturelle*, **10**, 8–66 + 1 pl.
- Davis JI, Nixon KC (1992) Populations, genetic variation, and the delimitation of phylogenetic species. *Systematic Biology*, 41, 421–435.
- Delfino M, Böhme M, Rook L (2007) First European evidence for transcontinental dispersal of *Crocodylus* (Late Neogene of Southern Italy). *Zoological Journal of the Linnaean Society*, 149, 293–307.
- Deraniyagala PEP (1948) Some scientific results of two visits to Africa. *Spoila Zeylanica*, **25**(2), 1–42.
- Drake NA, Blench RM, Armitage SJ, Barlow CS, White KH (2011) Ancient watercourses and biogeography of the Sahara explain the peopling of the desert. *Proceedings of the National Academy of Sciences, USA*, **108**(2), 458–462.
- Drummond AJ (2007) Beast: Bayesian evolutionary analysis by sampling trees. *BMC Evolutionary Biology*, 7, 214.
- Drummond AJ, Ho SY, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biology, 4, e88.
- Eaton MJ, Martin A, Thorbjarnarson J, Amato G (2009) Specieslevel diversification of African dwarf crocodiles (Genus Osteolaemus): a geographic and phylogenetic perspective. Molecular Phylogenetics and Evolution, 50(3), 496–506.
- Falk TM, Teugels GG, Abban EK, Villwock W, Renwrantz L (2003) Phylogeographic patterns in populations of the blackchinned tilapia complex (Teleostei, Cichlidae) from coastal areas in West Africa: support for the refuge zone theory. *Molecular Phylogenetics and Evolution*, **27**, 81–92.
- Fergusson RA (2010) Nile crocodile *Crocodylus niloticus*. In: *Crocodiles. Status Survey and Conservation Action Plan*, 3rd edn (eds Manolis SC, Stevenson C), pp. 84–89. Crocodile Specialist Group, Darwin.
- Friesen VL, Congdon BC, Kidd MG, Birt TP (1999) PCR primers for the amplification of five nuclear introns in vertebrates. *Molecular Ecology*, 8, 2147–2149.
- Fuchs K, Mertens R, Wermuth H (1974) Die Unterarten des Nilkrokodils Crocodylus niloticus. Salamandra, 10(3/4), 107– 114.
- Gatesy J, Amato GD (1992) Sequence similarity of 12S ribosomal segment of mitochondrial DNAs of gharial and false gharial. *Copeia*, 241–243.

- Gatesy J, Amato G, Norell M, DeSalle R, Hayashi C (2003) Combined support for wholesale taxic atavism in gavialine crocodylians. *Systematic Biology*, **52**(3), 403–422.
- Geoffroy Saint-Hilaire E (1807) Description de deux crocodiles qui existent dans le Nil, comparés au crocodile de Saint-Domingue. *Ann. Mus. Hist. Nat.*, **10**, 67–86, 264 + 2 pl.
- Gilbert MTP, Bandelt H-J, Hofreiter M, Barnes I (2005) Assessing ancient DNA studies. *Trends in Ecology & Evolution*, **20**(10), 541–544.
- Goldstein PZ, DeSalle R (2000) Phylogenetic species, nested hierarchies, and character fixation. *Cladistics*, **16**, 364–384.
- Goudie AS (2005) The drainage of Africa since the Cretaceous. *Geomorphology*, **67**(3–4), 437–456.
- Grandidier A (1872) Description de quelques reptiles noveaux decouverts a Madagascar en 1870. *Annual Science Nature Paris, series 5*, **15**(20), 6–11.
- Griffith E, Pidgeon E (1831) The Class Reptilia. The Animal Kingdom Arranged in Conformity With Its Organization, Vol. 9. Whittaker, Treacher, and Co., London, 97–201.
- Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. *Systematic Biology*, **52**, 696–704.
- Hekkala ER, Amato G, Desalle R, Blum MJ (2009) Molecular assessment of population differentiation and individual assignment potential of Nile crocodile (*Crocodylus niloticus*) populations. *Conservation Genetics*, **11**(4), 1435–1443.
- Hess PN, de Moraes CA, Russo M (2007) An empirical test of the midpoint rooting method. *Biological Journal of the Linnaean Society*, **92**, 669–674.
- Hewitt J (1937) A Guide to the Vertebrate Fauna of the Eastern Cape Province, South Africa. Part II: Reptiles, Amphibians and Freshwater Fishes. Albany Museum, Grahamstown, South Africa.
- Hofreiter M, Serre D, Rohland N et al. (2004) Lack of phylogeography in European mammals before the last glaciation. Proceedings of the National Academy of Sciences, USA, 101(35), 12963–12968.
- Hutton JM (2000) Who knows best? Controversy over unilateral stricter domestic measures. In: *Endangered Species*, *Threatened Convention. The Past, Present and Future of CITES* (eds Hutton JM, Dickson B), pp. 57–66. Earthscan, London.
- King FW, Burke RL (eds) (1989) Crocodilian, Tuatara, and Turtle Species of the World: A Taxonomic and Geographic Reference. Association of Systematics Collection, Washington D.C. ISBN: 0-942924-15-0.
- Kluge AG (1998) Total evidence or taxonomic congruence: cladistics or consensus classification. *Cladistics*, 14, 151–158.
- Kumamoto AT, Charter SJ, Houck ML, Frahm M (1996) Chromosomes of Damaliscus (Artiodactyla, Bovidae): simple and complex centric fusion rearrangements. *Chromosome Research*, 4, 614–621.
- Larkin MA et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics, 23, 2947–2948.
- Laurenti JN (1768) Specimen Medicum, Exhibens Synopsis Reptilium. Vienna.
- Lee D-C, Halliday AN, Fitton JG, Poli G (1994) Isotopic variations with distance and time in the volcanic islands of the Cameroon line: evidence for a mantel plume origin. *Earth and Planetary Science Letters*, **123**, 119–138.

- Leonard JA (2008) Ancient DNA applications for wildlife conservation. *Molecular Ecology*, **17**, 4186–4196. doi: 10.1111/ j.1365-294X.2008.03891.x
- Maddison WP (1997) Gene trees in species trees. Systematic Biology, 46, 523–536.
- May RM (1990) Taxonomy as destiny. Nature, 347, 129–130.
- McAliley LR *et al.* (2006) Are crocodiles really monophyletic? Evidence for subdivisions from sequence and morphological data. *Molecular Phylogenetics and Evolution*, **39**, 16–32.
- de Menocal PB (2004) African climate change and faunal evolution during the Pliocene-Pleistocene. *Earth and Plant Science Letters Frontiers*, **6976**, 1–2.
- Meredith RW, Hekkala E, Amato G, Gatesy J (2011) A phylogenetic hypothesis for *Crocodylus* (Crocodylia) based on mitochondrial DNA: evidence for a trans-Atlantic voyage from Africa to the New World. *Molecular Phylogenetics and Evolution*, **60**, 183–191.
- Meyers JB, Rosenthal BR, Harrison GA, Ding ZD (1998) Deepimaging seismic and gravity results from offshore Cameroon Volcanic Line, and speculation of African hotlines. *Tectonophysics*, **284**, 31–63.
- Miller WE (1980) The Late Pliocene Las Tunas Local Fauna from Southernmost Baja California, Mexcio. Journal of Paleontology, 54(4), 762–805.
- Moodley Y, Bruford MW (2007) Molecular biogeography: towards an integrated framework for conserving pan-African biodiversity. *PLoS ONE*, **2**, e454.
- Moritz C (1994) Defining 'Evolutionarily Significant Units' for conservation. Trends in Ecology and Evolution, 9, 373–375.
- Nylander JA, Ronquist F, Huelsenbeck JP, Nieves-Aldrey JL (2004) Bayesian phylogenetic analysis of combined data. *Systematic Biology*, **53**, 47–67.
- Oaks JR (2011) A time calibrated species tree of Crocodylia reveals a recent radiation of the true crocodiles. *Evolution*, (in press). doi: 10.1111/j.1558-5646.2011.01373.x
- Paabo S, Poinar H, Serre D et al. (2004) Genetic analyses from ancient DNA. Annual Review of Genetics, 38, 645–679.
- Plana V (2004) Mechanisms and tempo of evolution in the African Guinea-Congolian rainforest. *Philosophical Transactions of the Royal Society of London Series B: Biology*, 359, 1585–1594.
- Posada J (2008) jModelTest: phylogenetic model averaging. Molecular Biology and Evolution, 25, 1253–1256.
- de Queiroz A (2005) The resurrection of oceanic dispersal in historical biogeography. *Trends in Ecology & Evolution*, 20(2), 68–73.
- Ramakrishnan U, Hadley EA (2009) Using phylochronology to reveal cryptic population histories: review and synthesis of 29 ancient DNA studies. *Molecular Ecology*, 18, 1310–1330.
- Rambaut A (2006) *FigTree: Tree Figure Drawing Tool*, v.1.0. Institute of Evolutionary Biology, University of Edinburgh. http://tree.bio.ed.ac.uk/software/figtree/.
- Rambaut A, Drummond AJ (2005) Tracer v1.3: MCMC Trace Analysis Tool. Institute of Evolutionary Biology, University of Edinburgh. http://tree.bio.ed.ac.uk/software/tracer/
- Ray DA, Densmore L (2002) The crocodilian mitochondrial control region: general structure, conserved sequences and evolutionary implications. *Journal of Experimental Zoology*, 294, 334–345.

- Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. *Bioinformatics*, 19, 1572–1574.
- Ross JP (ed) (1998) Status Survey and Conservation Action Plan: Revised Action Plan for Crocodiles. http://iucncsg.org/ph1/ modules/Publications/action_plan1998/plan1998a.htm 1998.
- Sarkar IN, Planet PJ, DeSalle R (2008) CAOS software for use in character-based DNA barcoding. *Molecular Ecology Resources*, 8(6), 1256–1259.
- Schmidt H (1885) Gedächtnisrede auf Dr. Eduard Rüppell. Ber. Senckenb. Naturf. Ges., 95–160 + 2 plates.
- Schmitz A et al. (2003) Molecular evidence for species level divergence in the Nile crocodile (Crocodylus niloticus). Comptes Rendus Palevol, 2, 703.
- Seutin G, Lang BF, Mindell DP, Morais R (1994) Evolution of the WANCY region in amniote mitochondrial DNA. *Molecular Biology and Evolution*, **11**, 329–340.
- Shapiro B, Drummond AJ, Rambaut A et al. (2004) Rise and fall of the Beringian steppe bison. *Science*, **306**, 1561–1565.
- Shedlock A, Haygood M, Pietsch T, Bentzen P (1997) Enhanced DNA extraction and PCR amplification of mitochondrial genes from formalin-fixed museum specimens. *BioTechniques*, 22, 394–400.
- Shine T, Böhme W, Nickel H, Thies DFG, Wilms T (2001) Rediscovery of relict populations of the Nile crocodile *Crocodylus niloticus* in south-east Mauritania, with observations on their natural history. *Oryx*, **35**(3), 260–262.
- Shirley MH, Oduro W, Yaokokore-Beibro H (2009) Conservation Status of Crocodiles in Ghana and Coted'Ivoire, West Africa. *Oryx*, **43**, 136–145.
- de Smet K (1999) Status of the Nile crocodile in the Sahara desert. *Hydrobiologia*, **391**, 81–86.
- Stejneger L (1933) Crocodilian Nomenclature. Copeia, 3, 117– 120.
- Swofford DL (2002) PAUP* Phylogenetic Analysis Using Parsimony (*and Other Methods). V.4. Sinauer Associates, Sunderland.
- Tamura K, Kumar S (2002) Evolutionary distance estimation under heterogeneous substitution pattern among lineages. *Molecular Biology and Evolution*, **19**, 1727–1736.
- Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. *Proceedings of the National Academy of Sciences, USA*, **101**, 11030–11035.
- Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. *Molecular Biology and Evolution*, 24, 1596–1599.
- Wermuth H, Mertens R (1977) Liste der rezenten Amphibien und Reptilien. Testudines, Crocodylia, Rhynchocephalia. *Das Tierreich*, **100**, 1–174.
- White P, Densmore L (2001) DNA sequence alignments and data analysis methods: their effect on the recovery of crocodylian relationships. In: *Crocodilian Biology and Evolution Surrey Beatty and Sons Chipping Norton, NSW* (eds Grigg G, Seebacher F, Franklin F), pp. 29–37.

- Willerslev E, Cooper A (2005) Ancient DNA. *Proceedings of the Royal Society B*, **272**, 3–16.
- Willis RE (2009) Transthyretin gene (TTR) intron 1 elucidates crocodylian phylogenetic relationships. Molecular Phylogenetics and Evolution, 53, 1049–1054.

M.H.S.'s research utilizes multiple inferential tools to elucidate population-level processes over different temporal and spatial scales to facilitate the conservation of wildlife in Africa and elsewhere. He is particularly interested in the interaction between historic, landscape features and contemporary human pressures in structuring wildlife populations.

Data accessibility

DNA sequences: DRYAD entry (datadryad.org; doi:10.5061/dryad.s1m9h)

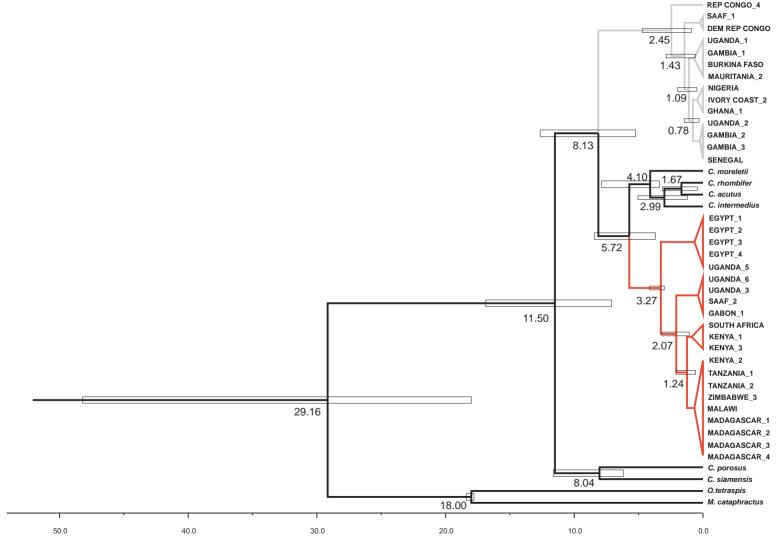
Supporting information

Additional supporting information may be found in the online version of this article.

Table S1 Gene regions and protocols used for amplification of mtDNA and nuclear introns for *Crocodylus niloticus* and affiliated specimens used in the study

Table S2 Estimated Molecular Divergence. Mean distance estimates with S.E. for the full, concatenated dataset (below diagonal) and mtDNA-only dataset (above diagonal). Values in the diagonal are intragroup mean distance estimates with S.E. for the full, concatenated dataset (left) and mtDNA-only dataset (right)

 Table S3 All mummy specimens examined for this study.


 Locality and date information is from museum accession notes

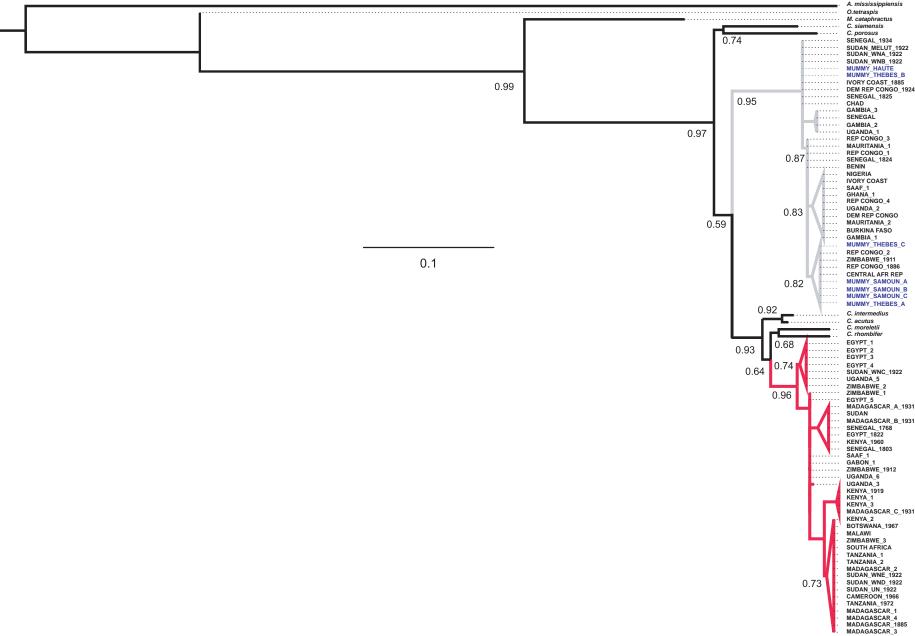

 unless otherwise noted

Fig. S1 Estimated divergence dates for the two *Crocodylus niloticus* clades under a relaxed clock model as implemented in BEAST v.4.3. The displayed estimates for mean divergence date and 95% confidence intervals are based on the full dataset partitioned by coding region with subsequent codon position partitioning.

Fig. S2 Phylogenetic tree resulting from maximum likelihood analysis of concatenated 12s and d-loop short fragments for contemporary and archival specimens. Mummy specimens have blue terminal labels.

Please note: Wiley-Blackwell are not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.

		Р	CR Reactio	n Cocktai	1					Ρ	CR Cycle Co	ondi	itions				
Gene	Vol.	Reaction Buffer	MgCl ₂	dNTP's	Primer	Taq	Extende Denatur	-	Denatur	e	Anneal		Extensic	'n	Extende Extensio	-	#
	μL	5X	тM	тM	μΜ	U/μM	Minutes	°С	Minutes	°С	Minutes	°С	Minutes	°С	Minutes	°С	#
125	15	1	1.5	0.2	0.5	0.03	4:00	94	1:00	94	1:00	52	1:30	74	4:00	72	35
12s (short)	25	Illustra pur	etaq beads				5:00	94	1:00	94	1:00	52	1:30	72	4:00	72	35
16S	25	Illustra pur	etaq beads				5:00	94	1:00	94	1:00	52	1:30	72	4:00	72	33
Control Region/dloop	15	1	1.5	0.2	0.5	0.03	4:00	94	1:00	94	1:00	54	1:30	72	4:00	72	35
d-dloop short	25	Illustra pur	etaq beads		1		4:00	94	1:00	94	1:00	54	1:30	72	4:00	72	35
ND4	25	Illustra pur	etaq beads				5:00	94	1:00	94	1:00	52	1:30	72	4:00	72	33
Wancy	15	1	1.75	0.2	0.5	0.03	4:00	94	1:00	94	1:00	55	1:30	72	4:00	72	35
Rag-1	15	1	1.5	0.2	0.5	0.03	4:00	94	1:00	94	1:00	56	1:30	72	4:00	72	35
Тгор	20	0.85	1.5	0.2	0.5	0.03	4:00	94	1:00	94	1:15	56	1:30	76	4:00	74	35
OD	20	0.9	1.5	0.2	0.5	0.03	4:00	94	1:00	94	1:00	54	1:30	74	4:00	72	35
S6	15	0.9	1.5	0.2	0.5	0.03	4:00	94	1:00	94	1:00	60	1:30	74	4:00	72	35

Table S2	Eastern <i>C</i> .	niloticus	Weste niloti		New	World	A	sia	M. cataphractus	O. tetraspis	A. mississippiensis
Eastern C. niloticus	0.003	0.007	0.0	45	0.0)32	0.0)66	0.125	0.166	0.484
Eastern C. <i>muoncus</i>	±0.0008	±0.00169	±0.00)921	±0.0	0647	±0.0	1247	± 0.02228	± 0.03081	±0.14319
Western C. niloticus	0.0	44	0.004	0.007	0.0)57	0.0)65	0.123	0.174	0.506
western C. <i>moucus</i>	±0.01	1136	±0.00094	0.002	±0.0	1158	±0.0	1239	± 0.02240	± 0.03332	±0.16007
New World	0.0	39	0.0	56	0.023	0.031	0.0)71	0.135	0.178	0.514
new world	±0.00	0892	±0.01	1325	±0.00463	±0.00577	±0.0	1329	± 0.02426	± 0.03282	±15967
Asia	0.0	0.075 0.0		67	0.0)76	0.076	0.077	0.138	0.188	0.492
Asia	±0.01	1670	±0.01	1603	±0.01680		±0.0149	±0.01374	±0.02463	± 0.03480	±0.15171
Magistons agtanhagatus	0.1	44	0.1	44	0.1	40	0.1	153	N/A	0.155	0.513
Mecistops cataphractus	±0.03	3427	±0.03	3492	±0.0	3296	±0.0	3589	IN/A	±0.02876	±0.15830
	0.1	75	0.1	62	0.1	58	0.1	197	0.159	N/A	0.471
Osteolaemus tetraspis	±0.04	4625	0.0	42	±0.0	4152	±0.0	5273	± 0.03966	IN/A	±0.13390
Allicator mississippiansis	0.2	93	0.3	32	0.3	32	0.3	396	0.338	0.316	N/A
Alligator mississippiensis	0.0	86	±0.11	1862	±0.1	0341	±0.1	4893	± 0.10481	±0.09330	

Museum	Specimen Number	Terminal Label	Specimen Name	Site Number	Locality	Country	Collector	Date Collected	Haplotype
MNHN	1986_1475	MUMMY_SAMOUN_A	mummySamA	8	Mummy - Grottes de Samoun	Egypt	Gervais	200BC-200AD*	W
MNHN	1986_1478	MUMMY_SAMOUN_B	mummySamB	8	Mummy - Grottes de Samoun	Egypt	Gervais	200BC-200AD*	W
MNHN	1986_1480	MUMMY_SAMOUN_C	mummySamC	8	Mummy - Grottes de Samoun	Egypt	Pariset	200BC-200AD*	W
MNHN	1986_1471	MUMMY_THEBES_A	mummyThebA	7	Mummy - Grottes de Thebes	Egypt	Cailloud - collected 1820s	200BC-200AD*	W
MNHN	1986_1473	MUMMY_THEBES_B	mummyThebB	7	Mummy - Grottes de Thebes	Egypt	Cailloud - collected 1820s	200BC-200AD*	W
MNHN	1986_1479	MUMMY_THEBES_C	mummyThebC	7	Mummy - Grottes de Thebes	Egypt	Cailloud - collected 1820s	200BC-200AD*	W
MNHN	1886_445	MUMMY_HAUTE	MummyHaute	7	Mummy, Haute Egypt	Egypt	V. Schoelcher	200BC-200AD*	W
PHM	620101	N/A	PHM620101	N/A	Mummy unknown	Egypt	Unknown	pre-dynastic	ND
PHM	55121	N/A	PHM55121	N/A	Mummy unknown	Egypt	Unknown	pre-dynastic	ND
PHM	514	N/A	PHM514	N/A	Mummy unknown	Egypt	Unknown	pre-dynastic	ND
BM	35734	N/A	BM35734	N/A	Mummy Manfalut	Egypt	E.J. Andrews	Roman	ND
BM	35726	N/A	BM35726	N/A	Mummy unknown	Egypt	Unknown	pre-dynastic	ND
BM	35747	N/A	BM35747	N/A	Mummy Manfalut	Egypt	Unknown	pre-dynastic	ND
BM	35751	N/A	BM35751	N/A	Mummy Manfalut	Egypt	Unknown	pre-dynastic	ND
BM	6837	N/A	BM6837	N/A	Mummy Manfalut	Egypt	E.J. Andrews	Roman	ND
BM	6847	N/A	BM6847	N/A	Mummy Manfalut	Egypt	E.J. Andrews	Roman	ND
Upenn	E521	N/A	UpennE521	N/A	Mummy unknown	Egypt	Unknown	ND	ND
Upenn	2965563	N/A	Upenn2965563	N/A	Mummy-Dindereh	Egypt	Cox Expedition 1918	ND	ND
Upenn	E2832	N/A	UpennE2832	N/A	Mummy-Tel El Yehudiyeh	Egypt	Flinders Petrie	ND	ND
Upenn	L12112	N/A	UpennL12112	N/A	Mummy-Maabdah (Samoun)	Egypt	Unknown	Late period	ND
Upenn	L12113	N/A	UpennL12113	N/A	Mummy-Thebes?	Egypt	G.R. Glidden 1848	Late period	ND

MNHN= Musee National d'Histoire Naturelle, PHM=Phoebe Heart Museum UCBerkeley, BM=British Museum, Upenn=Penn Museum * estimated dates as per S. Ikram Cairo Museum