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Introduction 
In a report to the Yukon Energy Corporation, Morrison Hershfield Ltd. presented a preliminary 
assessment of the feasibility of generating electricity from tree biomass1. They estimated that 
there is sufficient feedstock2

This document reviews two aspects of the Morrison-Hershfield proposal: first it evaluates the 
assumptions and parameters applied to the biomass feedstock assessment; second, it examines 
the ecological sustainability of post-disturbance logging in Yukon forests, in general and in 
relation to the specific proposal.  

 available within 250 km of Whitehorse to support a 26 MW power 
generation facility.  

Part 1. Review of biomass feedstock assessment 
This section critiques the Morrison Hershfield estimates of feedstock supply and feedstock cost. 

There are substantial uncertainties relating to feedstock. Morrison Hershfield identified security 
of feedstock, due to lack of appropriate tenure, to be a significant project risk. They noted the 
need to further investigate the socially acceptable rate of dead tree harvesting from burned 
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stands and the status of the biomass inventory. Morrison Hershfield also indicated that 
feedstock costs are a substantial portion (about 2/3) of total system costs and that further 
analyses of these costs are needed. 

1. Feedstock supply 
Is there sufficient feedstock, in the form of dead tree biomass, available from existing burned 
and beetle-killed forests, within a reasonable distance, to support a power generation facility in 
Whitehorse? Morrison Hershfield responded with a tentative “yes”, identifying sufficient 
feedstock for a 26 MW power generation plant. Table 1 summarises Morrison Hershfield 
parameters and assumptions, and our comments. 

The underlying assumption that a power plant with a generation capacity of > 20 MW is 
needed for cost-effective energy production may not be warranted. The proposal does not 
consider smaller projects that may be viable given a market for heat and emerging technology3

The assumptions and parameters used to calculate the volume of biomass needed to support 
a 26 MW facility seem reasonable. In most cases, parameters and assumptions are clear and 
consistent with the literature. The proposal seems to address moisture content, but is not clear 
on how energy calculations account for moisture (Table 5 in Morrison Hershfield).  

. 

The proposed rate of biomass extraction in the Haines Junction area exceeds long-term 
sustainable harvest rates. Sustained yield forestry spreads a harvesting cycle over a hundred 
years or more to allow trees to achieve near-maximum average growth rates and to provide a 
relatively steady flow of economic benefits. Harvesting in excess of sustained yield is 
unsustainable from social, ecological and timber perspectives. 

Based on a rough estimate, the long-term sustained yield for the forested ecosystems in the 
Champagne and Aishihik Traditional Territory (CATT) forest management zone (Haines Junction 
area), assuming regeneration success, is 29,000 – 39,000 m3/year (Table 2). This estimate is 
within the upper range of yield because it does not account for all conservation of non-timber 
values (e.g. higher retention in high wildlife value ecosystems), the current age class imbalance 
(i.e., mostly young forest remains), regeneration challenges, natural disturbance and climate 
change. Even this upper range is only about a third of the 100,000 m3/year included in the 
Morrison Hershfield calculations. When disturbance events create a stock of dead trees that 
exceeds sustained yield, forest managers are often tempted to increase harvest levels in order 
to harvest stands before wood decays and becomes unmerchantable. Such policies bring short-
term economic benefits (e.g., company revenue and jobs), but can negatively affect mid-term 
timber supply and social-ecological values4

With climate change, it is possible that these ecosystems may undergo a state shift from spruce 
forests to aspen and/or shrub parkland (see Ecological Sustainability section). In that scenario, 
there is no long-term sustained yield for these ecosystems, and any logging should be 
considered a one-time opportunity. The possibility of an ecosystem shift could be used to argue 
for either less harvest in order to maintain resilience, or to argue for more harvest because the 
ecosystem is already fully impacted. 

.  

The Morrison Hershfield estimate of available biomass from the Haines Junction beetle-
disturbed ecosystems is double previous estimates of available harvest, even for a one-time 
salvage opportunity. Within the beetle-disturbed ecosystems around Haines Junction, about 1 
million m3 of biomass is available for harvest over a period of about a decade5. This biomass is a 
one-time salvage opportunity and does not represent a sustainable harvest level6. Morrison 
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Hershfield, however, extrapolate the 1 million m3/decade to two decades and conclude that 2 
million m3 will be available over 20 years. They do not provide a rationale for this assumption.  

The 1 million m3 harvest level is based on a decision rationale7 and timber supply analysis8 that 
accounts for the Integrated Landscape Plan for CATT9, and is reasonable and consistent with the 
plan. Although 380,000 ha have been disturbed by spruce beetles10, much less area is available 
for harvest. About a quarter of the infestation lies in Kluane National Park11. Most of the rest 
falls in CATT, with about 10,000 ha to the north and southeast. When management objectives 
and timber quality are accounted for, only a very small proportion of the CATT is suitable for 
harvesting: 7,100 ha of relatively high volume stands and 15,000 ha of low volume stands (Table 
3). The total volumes (mostly white spruce, some deciduous) associated with these areas are 
729,000 m3 and 741,000 m3 respectively12. Only the high volume stands (> 75m3/ha) are 
considered merchantable13, but the timber supply rationale assumes that 50% of low volume 
stands may be harvestable14. Thus, excluding deciduous forest, about 1,000,000 m3 is available 
for post-disturbance harvesting, although uncertainty about timber supply projections is quite 
high15

The provisional forest management “yellow” zone in CATT does contain an additional million m3 
of salvageable timber

.  

16. This area can be considered for harvesting following an evaluation of 
forestry success in the forest management “green” zone17

The estimates of available biomass in the fire-disturbed ecosystems are also optimistic. Within 
the Fox Lake and Minto fire-disturbed ecosystems included in the Morrison Hershfield proposal, 
the estimate of harvestable biomass considers neither non-timber values nor the economics of 
low-volume stands. The proposal notes that volumes available from these areas may be reduced 
to meet other management objectives, but does not include estimates. For example, 
considering biodiversity values, within the CATT area, only 62% of the area within the forest 
harvest zone (only 22% of total forest area) is available for harvest after accounting for within-
stand retention (Table 3). There is uncertainty about the level of retention required in the burns: 
the areas are smaller than the CATT area, possibly allowing for lower retention depending upon 
landscape condition; the Minto burn, however, lies within caribou habitat, calling for higher 
retention and fewer roads. To correct for low productivity, Morrison Hershfield only subtracts 
10% of the volume estimated by the growth model, whereas the timber supply scenarios 
calculated for the CATT area subtract 32% from the modelled growth

, but seems unlikely to be available in 
the short term. 

18

Morrison Hershfield note that other burns might be available to provide additional biomass. 
Other recent burns, however, are mostly inaccessible or a long distance from Whitehorse (e.g., 
burns between Carmacks and Faro are ~250 km from Whitehorse)

.   

19

There is uncertainty about the assumptions of the increased biomass available from whole-
tree harvest for the Haines Junction harvest. For the Haines Junction logging, the Morrison 
Hershfield proposal assumes an increased harvest volume of 40% from whole-tree harvest 
relative to stem-only harvest. The actual volume that can be extracted is uncertain and depends 
upon the harvesting system, biomass characteristics and difficulty of access (e.g. whether tops, 
limbs and bark are used, loss during harvesting

. 

20, and whether biomass can be hauled as chips 
or logs21

Tree decay rates were not included in the Morrison Hershfield calculations. This assumption is 
likely valid for the 20-year period considered, because decay is very slow in the western Yukon

). 

22. 
It might be useful, however, to consider potential decay23.  
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Table 1. Level of agreement (yes, no, uncertain) with Morrison Hershfield assumptions used to calculate feedstock. 

Variable Value Morrison Hershfield assumptions  Comments 

Generation 
Capacity based on 
feedstock 

26 MW24 > 20 MW needed for economy of scale 
(cost estimates based on 25 MW over 
20 year project lifespan). 

 ? Commercially viable plants usually range from 20-100 MW25

If heat is marketable, emerging technology may allow smaller 
plants

. 

26

Oven Dry Tonnes 
(ODT) feedstock 
needed for 26MW 

. 

145,400 ODT/yr 20.6 MJ/Kg (at 0% moisture). 

25% energy captured as electricity. 

90% plant utilization (i.e., generating). 

15% moisture content. 

 

 

 

? 

Energy content (at 0% moisture), energy capture, and plant 
utilization are consistent with literature27

It is not clear how energy calculations accounted for moisture (Table 
5 in Morrison Hershfield). At 20% MC, wood gives about 18.6 
MJ/kg

. 

28

Biomass volume 
needed for ODT 

. 

319,880 m3/yr 2.2 m3/ODT.  Literature supports 2.2 m3/ODT29

Harvestable 
biomass from 
Haines Junction 
area 

. 

100,000 m3/yr 
for 20 years 

One million m3 available for one decade 
can be extrapolated to two decades, 
70% of which will be available for a new 
tenure. 

X 

 

 

Very likely too high: one million m3 is a one-time salvage opportunity 
based on a decision rationale and timber supply analysis that 
accounted for the Integrated Landscape Plan for Champagne and 
Aishihik Traditional Territory30

Long-term sustained yield is ~35,000m3/yr (Table 2). 

 (Table 3).  

Whole-tree 
harvest 

40% more than 
stem-only 

Biomass harvesting increases harvest 
volume by 40% over AAC, which is 
based on volume of stem inside bark. 
100,000 m3 x 70% available x 140% 
biomass adjustment  = ~100,000 m3 

? 

 

Tops (< 10 cm diameter) increase volume by 13%31; tops and limbs 
increase volume by 25%32; tops, limbs and bark increase volume by 
48%33. Actual biomass recovery depends in part on losses during 
harvesting34. Biomass may have to be hauled as logs (not chips) from 
some sites35

Harvestable 
biomass from 
burned areas 

. 

53,800  m3/yr 
from Fox Lake 

166,100 m3/yr 
from Minto 

Based on inventory data, VDYP growth 
model (assuming whole-stem harvest) 
and area harvestable. 

 

Minus 10% for volume lost to fire. 

Minus 10% volume adjustment for using 
VDYP in Yukon. 

X 

 
 
 

 

? 
 

Likely too high because non-timber values and economics of low 
volume stands are not considered. For example, in CATT, only 62% 
(53,500 of 86,000 ha) of the area is available for harvesting after 
conservation measures are accounted for (Table 3). As above, 
biomass yield depends on harvesting losses and accessibility for chip 
trucks. 

Timber supply scenarios for CATT use a 32% volume adjustment36. 
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Table 2. Parameters used to roughly estimate maximum sustained yield in the Champagne and Aishihik 
Traditional Territory forest management (green) zone. 

 Site Productivity Class  

Variable Good Medium Poor Low Total 

Net operable land base37 105 ha   5069 ha 53707 ha 8329 ha 67,210 ha 

~Site index: tree height (m) 
at age 10038

23 (20-25) 
 

18 (15-20) 13 (10-15) 5 (0-10)  

Mean annual increment at 
optimum rotation ageA 

2.05m3/ha 
@ 130 yr 

1.34 m3/ha 
@ 150 yr 

0.67 m3/ha 
@ 160 yr 

Too low to 
estimate 

 

Annual volume produced 
on landscape 

215 m3 6,792 m3 35,984 m3 0 42,991 m3/yr 

Adjusted yearly volume (10% to 32% decrease)B 29,000 to 
39,000 m3/yr 

AVariable Density Yield Prediction39

B Past VDYP Projections were reduced by 10% (Morrison Hershfield) and 32% (Yukon Government Timber Supply analysis

 model estimate of whole stem volume (all trees > 4 cm DBH) of 100% white spruce stand in Black 
and White Boreal Spruce Subzone in BC. 

40

Table 3. Area of low and high volumes stands available for harvesting in Champagne and Aishihik 
Traditional Territory, based on Timber Supply Scenarios

) to 
account for Yukon context. 

41

Zone 

. 

Description Area 
(ha)A 

% 
Area 

Forested designation in CATT Coarse resolution forest zone that includes 
other land uses. 

246,900  

CATT forest available for management Forested area minus town, agricultural and 
private land (8,000 ha) 

238,900 100 

Orange zone: conservation forest 
management 

No commercial forestry 83,200 35 

Yellow zone: provisional forest 
management 

May be considered for forestry in future 
following evaluation of forestry in green zone 

69,700 29 

Green zone: available for forest 
management 

Commercial forestry allowed 
(94,000 ha total zone includes town, etc.) 

86,000 36 

Green zone minus area needed for 
basic management (i.e., Timber 
Harvest Planning and Operating 
Guidebook, 1999, and Environmental 
Assessment assumptions) 

Subtract 18,800 haB of 
 Riparian zones (100 -200m) 
 Highway buffers (60m) 
 In-block retention (10%) 

67,200 28 

Green zone minus basic management 
and minus area needed for high value 
wildlife guidelinesC 

25% retention over about 80% of net 
available landbase of 67,200 ha 

53,500 22 

Very low volume stand portion Stands with < 25 m3/ha 31,400 13 

Low volume stand portion Stands with 25 m3/ha to 75m3/ha  15,000 6 

High volume stand portion Stands with > 75m3/ha 7,100 3 
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A Areas are approximate. 
B Also includes “fires”. 
C This scenario is also likely to achieve other CATT  landscape plan guidelines (< 50% harvest of each eco-region and eco-district; < 
50% of each site class harvested; <20% harvest of a landscape unit prior to assessment)42

2. Feedstock cost 

.  

Feedstock costs are a substantial component of the total cost of biomass-based energy 
production43 (e.g., 63 % in Morrison Hershfield). Cost estimates vary widely among studies and 
need further analysis44. Costs are difficult to extrapolate to different settings, because they vary 
with harvesting system45 and type of equipment, terrain, timber characteristics and region. 
Yukon faces high workforce and energy costs relative to other regions46

The Morrison Hershfield feedstock cost estimates are reasonable for relatively productive 
stands, but not for low volume stands. We estimate that costs could increase by 50% in the low 
volume stands that cover a substantial portion of the proposed harvest areas (e.g., about one 
third of the biomass supply in the CATT). 

. Conversely, Yukon 
terrain is relatively gentle and includes abundant gravel, reducing road construction costs. 

The Morrison Hershfield cost estimate ($53/m3 for a 100km distance to plant) is consistent with 
other Yukon cost estimates and with the higher portion of the range of estimates for other 
jurisdictions (Table 4)47. Costs in Yukon are expected to be higher than in other jurisdictions 
(e.g., about 50% higher in southeast Yukon than in Alberta, before stumpage) due to several 
factors48

 small average tree size and low stand volume (~150 m3/ha or less versus an average of > 
200m3/ha across the prairie provinces)

: 

49

 low stand volumes increase the amount of road required per unit volume harvested, 
 increase harvesting costs, 

 the small annual harvest does not allow for “economy of scale” benefits in silviculture, 
 the complexity related to a relatively “young” forest governance system increases overhead 

costs. 

Biomass density surrounding a facility substantially influences total feedstock cost50. The cost 
estimates for Yukon are likely based on stand densities that have traditionally been targeted for 
harvest (e.g., 75 – 200 m3/ha). We believe that costs will be higher in the low-volume stands (25 
–  75 m3/ha)51 that comprise a substantial portion of proposed harvest areas (e.g., ~1/3 of 
volume near Haines Junction). Low volumes per hectare increase road development costs (2.5X), 
harvesting costs (1.7X) and silviculture costs (3X)52. Low stand volumes are typically associated 
with smaller tree sizes, and harvesting costs increase substantially as tree size drops below 
about 0.2 m3/tree (e.g., a stand with 150 m3/ha and 750 stems/ha)53

Long-distance hauling costs may decrease the viability of the project. Morrison Hershfield 
estimate transportation costs of $0.13/m3 per km (one way). This estimate may be slightly high. 
Even with a more reasonable ($0.10/m3 per km) transportation cost (Appendix), however, the 
long distances described in the proposal add substantially (e.g., $18/m3 from Haines Junction) to 
total feedstock cost, particularly if fuel costs continue to rise

. We estimate that low 
volume stands can increase harvesting costs by more than 50% over historic industry estimates 
(Table 4). 

54. For biomass energy applications, 
the economically feasible haul distance is quite short (e.g., about 70 km55; about 120 km in the 
US56). Even for more lucrative sawlog harvesting operations, round trip times of more than 
seven hours (about 250 km one way) are not considered to be economically feasible near Prince 
George, BC57. Ideally, energy plants should be centred amidst a dense feedstock supply58. 
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Hence, despite the possible over-estimation of transportation costs, the proposed distances are 
not considered viable elsewhere. This raises the possibility that, if an energy-generating project 
in Whitehorse goes ahead, there may be increased pressure to log forest closer to the plant59

Table 4. Cost estimates for lumber and biomass harvesting from selected sources and with 
modifications. (Numbers have not been altered to account for inflation.) 

. 

Project  Morrison 
Hershfield 

Biomass 

SW Yukon 

Niquidet et 
al.60

BiomassA 

 

Quesnel, BC 

Price 
Waterhouse 

Cooper 
(PWC)61

Lumber 

 

SE Yukon 

PWC modified 
for this review 
for biomassB  

PWC modified 
for this review 

for biomass and 
low volume 

standsc 

Phase Cost ($/m3) 

Road construction 5.39 3.22 4 3.20 8 

Harvesting (i.e., 
felling, skidding) 

15.90 11.56 to 24.08 25.50 16 27 

Limbing/bucking and 
loading 

4.00 0 included 
above 

0 0 

Chipping and loading 5.00 $3.60 at plant 0 8 8 

Hauling (per 100 km 
to mill) 

13.21 ~10.00 10 10 10 

ReforestationD 5.00 5.18 to 10.70 8 6.40 19 

Administration 4.49 8.00 7 5.60 5.60 

Delivered wood cost 
before stumpage 

52.99 41.56 to 59.60 54.50 49.20 77.60 

AAverage density of harvestable trees over landscape ~ 150m3/ha (5.3 mil m3 per year over 25 years from 921, 527 ha). 
BExcludes harvesting costs of  $4.00/m3 for limbing and bucking62 and $1.50 for loading63

cLow volume means 50m3/ha (mid-point of 25 – 75 m3/ha volume class). Road construction costs increased by 2.5 X, harvesting 
costs by 1.7 X and silviculture by 3X

; all numbers except for transport and 
chipping multiplied by 0.8 to account for 25% more recoverable biomass; chipping costs increased to reflect chipping in the woods. 

64

DUnder current policy, the government pays for reforestation and collects a $5.00 fee as part of stumpage
; effects of longer transportation distances not shown. 

65

Because of the large influence of transportation distances on feedstock cost, smaller plants 
could be considered. Transportation distances influence viable plant size. Optimum plant size 
can be determined by trading off the improved electricity generation efficiency and capital cost 
recovery of larger plants with increased feedstock requirements and hence transportation 
costs

. The intention is to base 
the fee on historic costs, so presumably stumpage fees will increase to reflect any increased reforestation costs. Reforestation 
includes natural regeneration and planting. If natural regeneration is successful, reforestation costs may not increase three fold. 

66

26

. Where there is a market for heat, the efficiency of electricity production becomes less 
important and smaller combined heat and power plants can be considered, especially with 
emerging technology. Smaller plants can be located closer to feedstock to reduce transport 
costs. A BC study suggests that small 2 MW plants may be feasible with harvest costs of $40/m3 
and transport distances of 50 to 100 km . The Yukon Energy Corporation reports support for 
such small-scale energy and heat generation plants in the Yukon67

 

.   
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More broadly, Yukon faces several challenges related to forestry development that could 
increase costs68

 uncertain policy environment, 
:  

 uncertain forest landbase, 
 ongoing losses from natural disturbance, 
 potential loss of forests due to climate change impacts on regeneration, 
 limitations of tree species and stand characteristics, 
 distance to markets, 
 shortage of skilled labour. 

 

Part 2. Ecological Sustainability of Post-disturbance Biomass 
Logging69

Consideration of the ecological sustainability of removing wood biomass from naturally-
disturbed ecosystems in Yukon forests requires assessment of the potential cumulative effects 
of climate change, natural disturbance and post-disturbance biomass harvest in boreal forests. 
Potential ecological impacts, and uncertainties, increase from traditional green-tree logging, 
through logging of naturally-disturbed stands, to logging of whole trees for biomass conversion. 
Essentially, cumulative effects build as logging is added to natural disturbance, and as more 
biomass is removed from the ecosystem. To date, in Yukon forests, there is no experience with 
the latter two activities, and very limited experience with large-scale forestry operations

 in Yukon Forests 

70

This section begins with a brief overview of current and projected impacts of climate change, 
because these impacts form the background for any analysis of the impacts of forest harvesting. 
The following sections describe potential issues, risks and uncertainties associated with post-
disturbance biomass logging in general, and with the Morrison Hershfield proposal in particular. 
The final section describes best practices for post-disturbance logging in boreal forests. 

. 
Guidance thus arises from studies in boreal forests elsewhere, and from meta-analyses across a 
range of forested ecosystems. Additional uncertainty arises because dry forests of the 
southwest Yukon are at the edge of the extent of forested ecosystems, an ecotone that may 
shift with climate change. 

3. Climate Change Context 
The boreal forest has persisted, relatively unchanged, for 6,000 years. The current rate of 
climate change, however, may be threatening this resilience71. Disturbances of all types (fire, 
insects, disease, permafrost thaw) are more extensive than at any time historically. In the past 
two decades in Alaskan boreal forests, more area has burned and late-season fires have burned 
more deeply into the soil72. In Kluane, spruce beetles have been kept at endemic levels by cold 
temperatures until a series of warm summers starting in the 1980s initiated the recent outbreak 
as beetles attacked drought-stressed trees73

Already, the increased disturbance frequency, as well as increased summer temperatures and 
decreased water availability have changed tree regeneration and succession trajectories

. An increase in the rate of larval maturation, due to 
warmer summers, exacerbated the rate of beetle increase. Although spruce beetle outbreaks 
have occurred reasonably regularly at about 50-year intervals in the warmer Kenai Peninsula 
ecosystems, there is only evidence of a single previous outbreak in the Kluane area over the past 
250 years. With warmer summers, fires and beetle outbreaks are likely to increase.  

74. 
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Except on poorly-drained sites, severe fires have disrupted black spruce regeneration, and 
shifted successional trajectories from spruce-to-spruce replacement to trajectories dominated 
by deciduous seedlings, with very little spruce recruitment at all on dry sites75. White spruce 
growth rates have declined with warmer summers. Growth is now limited by drought rather 
than nutrients or temperature76

In dry ecosystems, such as the southwest Yukon, there are predictions that, with the change in 
disturbance regimes and with stabilising feedbacks weakened by warming, the boreal forest is 
potentially on the cusp of a non-linear conversion to shrub and/or aspen parkland

.  

77

4. Potential Issues of Post-Disturbance Logging 

. 
Uncertainties remain about the rate of change and extent of compensation via redistribution of 
species. 

4.1. Nutrient Supply 
Nutrient availability and limitation varies among ecosystems, and often defines forest structure. 
In general, boreal forests have low nutrient availability due to cold temperatures and slow 
decomposition rates. Some ecosystems (e.g. poorly-drained black spruce ecosystems) have 
particularly low productivity.  

In Alaska, spruce growth was nutrient-limited until the past decade, when increased 
temperature and decreased moisture led to a shift from nutrient to moisture limitation during 
the growing season78

Studies over multiple rotations in Scandinavia suggest that green-tree logging (whether by 
clearcut or selective harvest) that does not leave structure on-site can reduce nutrients over 
time (e.g. dead wood volume reduced from 30 – 40% of total wood volume in unmanaged 
stands to 1% after several rotations

. Currently, nutrients limit productivity only during early spring growth 
when the soil is cold, in cool moist sites, or in wet years. At other times and sites, moisture 
availability controls tree growth on warm sites, and temperature limits growth on cold sites. This 
change in an ecological process demonstrates how climate change can lead to non-linear state 
changes that are difficult to predict. 

79

Natural disturbances can alter nutrient balance. Fire can increase or decrease nutrients 
depending on burn severity. In black spruce and jack pine boreal forests in Quebec, light-
moderate burns increased Ca, Mg and K concentrations in the forest floor and upper mineral 
layer, while severe burns reduced levels of N, Mg and K

). In Canada, studies have not yet found long-term nutrient 
depletion, likely partly because most of the country, including the boreal forest, has not yet 
experienced multiple rotations of industrial biomass removal. In addition, regulations for leaving 
remnant structure are intended to mitigate the impacts of extraction of nutrients from a site. 
Further, with most stem-only logging, nutrient-rich foliage is left on site, and organic material on 
the forest floor remains in place. 

80. Nutrients rebuild through weathering 
and precipitation, but can take a century to recover. Harvest following severe fires may impact 
nutrients negatively. On severely burned sites, post-disturbance harvest has been projected to 
lead to reduced nutrient levels (of Ca, Mg and K, but not N) that would not return to pre-burn 
levels throughout an entire 110-year rotation81

Whole-tree harvest potentially has a larger impact on nutrient supply though effects vary by 
ecosystem and harvest methods. Most nutrients are contained within foliage and on the forest 
floor, and hence left on-site following stem-only harvest, particularly if limbing occurs in situ. 

.  
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Whole-tree harvest of live trees, or recently dead trees with foliage still attached, removes this 
nutrient source from the ecosystem, reducing tree growth in some stands82. Removing downed 
wood and forest floor organic materials potentially has a larger impact83. Productivity effects 
vary among studies, with nutrient-poor sites likely at greater risk.  

The proposed harvest likely does not pose a high risk to nutrient supply on most sites. With 
climate change, moisture likely supersedes nutrient level as the limiting factor in the boreal 
forests of the southwest Yukon. Provided that forest harvest leaves sufficient structure to meet 
biodiversity objectives (as planned within the CATT ILP), and provided that biomass removal 
does not take foliage, downed wood or litter layers, there is no strong evidence that nutrient 
supply will be at high risk from a one-time harvest, except perhaps on the most nutrient-poor 
sites. The availability of nutrients may be moot if these ecosystems undergo the projected state 
change; although decreased nutrient levels might accelerate the shift. 

Importance of Issue to Proposal 

4.2. Forest Regeneration and Successional Pathways 
In boreal forest stands, black and white spruce trees typically replace themselves either directly, 
through understory to overstory replacement, or via a deciduous seral stage following a severe 
fire disturbance. Except where covered by deep ash layers, seedbeds are receptive after fire due 
to exposed mineral soil. Climate change, bringing increased fire frequency and intensity, and 
decreased moisture, reduces spruce regeneration. In dry boreal ecosystems, regeneration and 
succession have already been impacted by climate change84

Traditional green-tree harvesting considers regeneration a prerequisite for sustainable forestry 
and hence includes provisions to manage for successful regeneration (e.g. avoiding harvesting 
low-productivity sites, avoiding soil compaction, planting where appropriate, retaining seed 
trees). Green-tree logging, by definition, does not take place after a natural disturbance; hence 
impacts are not cumulative.  

.  

Conversely, post-fire logging may exacerbate regeneration difficulties through several 
mechanisms85: 1) loss of seed source through removal of branches with cones; 2) loss of seed 
source through removal and/or death of live spruces; 3) disturbance of seedbank on forest floor. 
If there are no retained live spruce, and if active seedbanks are destroyed, the only source of 
new spruce is from advanced regeneration or planting. On-site chipping of wood for biomass 
can further hinder regeneration in areas near roads by covering mineral soil with a blanket of 
chips86

White spruce is vulnerable at the site level. There is uncertainty about whether it can disperse to 
moister sites currently dominated by black spruce. If conditions are appropriate for dispersal, 
white spruce may be less vulnerable at the landscape level

.  

87

Currently there is no agreement on whether post-disturbance logging increases or decreases 
risk of subsequent fire

.  

88. 

The proposed harvest likely increases the risk of an ecosystem shift. Following fire, harvest in 
dry boreal ecosystems will likely accelerate the projected shift from spruce-dominated to aspen 
parkland forests. The ability of these disturbed ecosystems to regenerate as spruce forests is 
uncertain under the current climate even without logging. Post-disturbance harvest, particularly 
if it disturbs advanced regeneration, has the potential to put regeneration at a higher risk and 

Importance of Issue to Proposal 



 

Sustainability of Energy Production from Yukon's Forests: Review of Morrison Hershfield Assessment 11 

shift the successional trajectory to a new state. In the Minto fire site, white spruce is 
regenerating on lower and mid slopes, and pine is dominating the more-intensely disturbed 
southern aspects. In the Fox Lake burn, there is a shift from spruce to mixedwood or aspen 
forest post-fire.89

In the area of spruce beetle mortality proposed for biomass harvesting, there are few aspens. In 
these ecosystems, understory spruce will compete with shrubs (Salix sp., Sheperdia canadensis 
and Betula glandulosa). Given the paucity of surviving mature spruce trees, and hence lack of 
seed source, lack of good seedbeds (due to lack of soil disturbance), the successional trajectory 
will depend upon the abundance of healthy white spruce in the understory. If the spruce 
population is insufficient, the area may become dominated by the best-competing woody 
shrubs

 

90

4.3. Hydrology 

. Maintaining advanced regeneration will be critical to increasing resilience. 

Changes in water flow and sedimentation, as well as temperature and water chemistry, can 
impact hydroriparian ecological function. Forest harvesting can disturb soil surfaces and cause 
compaction, particularly on roads, landings and skid trails. Compaction influences water flow; 
increased erosion influences water quality. Traditional forestry aims to maintain site-level and 
watershed-level hydrology through limits to harvest amount per unit time (e.g. 1% of the 
forested area of a watershed per year91

Intensive natural disturbances kill most of the trees in an area, changing hydrology within the 
stand and increasing variability in soil moisture levels. In general, the hydrological properties of 
unlogged stands of dead trees lie between those of undisturbed forests and clearcuts

), limits to activities on sensitive terrain (e.g. steep, 
unstable slopes, floodplains, wetlands) and maintenance of riparian vegetation. Concern 
remains that current best management practices will not maintain the function of small streams 
because standards call for narrow, if any, buffers.  

92. Post-
fire logging can increase the risk of erosion of vulnerable soils93

Biomass removal has the potential to further affect hydrology. Increased areas of machinery use 
will increase compaction; conversely, if patterns of machinery use are similar to stem-only 
harvest, impacts will be similar. Removal of downed wood removes impediments to flow and 
potentially increases overland flow

. 

94. On-site chipping can leave a blanket of wood chips that 
further changes water flow and potentially leads to toxic leachate95. 

Impacts to hydrology are likely similar to traditional logging for a given volume of biomass 
removed provided that organic matter on the forest floor is not removed and that woodchips 
are managed effectively. The low productivity (most stands < 75m3/ha) means that a high road 
density will be needed to access a given volume of biomass; hence following hydrological best 
management practices for roads will be important. 

Importance of Issue to Proposal 

4.4. Post-disturbance Biodiversity 
Organisms are adapted to the natural disturbance regimes of their habitat96. Post-disturbance 
communities frequently differ from undisturbed communities within the same ecosystem type. 
In boreal ecosystems, fire and beetles create habitats that are neither emulated by harvesting 
nor prevalent in undisturbed mature forests.97 These habitats will likely increase with climate 
change. 
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Natural disturbances are important ecosystem processes that can increase structural complexity 
and landscape heterogeneity, and maintain biodiversity and productivity. Remnant forest 
legacies (including green trees and patches, and trees killed by the disturbance) control recovery 
from disturbance98

Studies of vegetation communities have found that ecosystems disturbed by fire have different 
communities than similar ecosystems that have been subsequently logged, particularly in the 
short-term

. Post-disturbance logging can undermine the benefits of disturbances. The 
loss of legacies from a disturbed area can impact many groups of organisms (e.g. cavity-nesters, 
beetles, mosses) and impair ecosystem recovery. 

99. Fire specialists are lacking from logged stands, and there are more weedy species. 
In general, the pre-burn community and fire severity dictate the post-fire vegetation 
community. In some cases in boreal forests in Siberia and Quebec, post-fire logging has shifted 
vegetation communities from forest to grassland100

Similarly, for birds, burned forests support distinct communities, with many species equally or 
more abundant than in undisturbed forests (some mature forest songbirds are in high 
abundance in burns; post-fire specialists, particularly woodpeckers, are either absent or at very 
low numbers in unburned forests)

. 

101.Distinct bird assemblages are associated with dead trees 
(e.g. cavity nesters and beetle foragers), with residual patches of unburned, especially mature, 
forest, with the open parkland habitat created by open areas adjacent to residual patches, and 
with post-fire early successional habitat (e.g. shrub nesters). Burn severity is a critical 
determinant of bird abundance and community composition102. In various studies, post-
disturbance logging led to fewer cavity-nesters, fewer post-fire specialists, fewer resident 
species, fewer canopy nesters and fewer insectivores103. Cavity-nesters are impacted by loss of 
nest sites and foraging opportunities: in some studies, even though the number of potential 
nest snags/hectare remained above recommended levels cavity nesters decreased, likely due to 
a reduction in food, particularly wood-boring beetles 104

The processes of post-disturbance ecosystem recovery are not well understood, in part because 
it is hard to find naturally-disturbed sites that are not logged.

.  

105 This uncertainty is particularly 
important given the potential shifts in disturbance regime and recovery from disturbance 
projected due to climate change. 

At the landscape scale, retention of unmanaged areas is generally intended to provide habitat 
for a variety of species and space for ecological functions to continue without much 
management interference.  Landscape-level retention primarily serves to maintain focal 
ecosystems (e.g. rare ecosystems and hydroriparian ecosystems) and to represent all 
ecosystems at a level that they can maintain ecological function. It also functions to provide 
habitat for focal species that are known to be associated with old forest structures or with 
structures remaining following natural disturbance. 

4.4.1. Landscape-level Retention 

Most theoretical and empirical studies agree that total amount of habitat is more important 
than habitat pattern106. If habitat amount over the landscape is too low, organisms are absent 
even from patches of suitable habitat. In boreal forests of Scandinavia, bird communities in 
small oldgrowth reserves, surrounded by managed forest, were more similar to those in young 
forest than to those in ecologically similar large reserves107. Retention in patches and corridors 
can be an effective supplement to patches of unmanaged forest in the landscape for 
maintaining biodiversity, but are not sufficient in isolation108. Even if old forest reserves retain 
old-forest species in the short term in managed forest landscapes, they will likely be insufficient 
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over the long-term and at a regional scale. Several simulation studies for boreal Canada have 
suggested long-term declines in old forest birds under various old-forest retention strategies in 
managed forest landscapes given existing rotations, harvest rates, and retention levels109

A considerable body of literature has asked “how much habitat is enough” at the landscape 
scale to allow occupation of suitable habitat. Much of this literature has focussed on the search 
for thresholds, where populations suddenly decline, or ecosystem processes suddenly change. 
Few sensitive organisms cross detrimental thresholds when habitat amount exceeds 60%; nearly 
two-thirds of sensitive species studied cross thresholds before their habitat drops to 30%

. 

110. 
Natural disturbance patterns can be used to predict habitat amounts that pose low risk to 
biodiversity. 

The proposed harvest within the Haines Junction beetle outbreak area likely poses low risk to 
biodiversity. These ecosystems lie within the CATT. In this area, an ILP designates 34% of the 
area as conservation forest, closed to harvest; an additional 28% is reserved pending 
assessment of success in the forest zone. Hence, 62% of the landscape is currently unavailable 
for harvest. Additional constraints ensure that less than 50% of each site productivity class and 
ecoregion/ecodistrict is harvested, preventing harvest that targets the most productive 
ecosystems. In coastal BC, retaining more than 60% of a landscape unmanaged (equating to 70% 
of the area expected to be old under natural disturbance conditions) is considered 
precautionary; less than 30% is considered high risk.

Importance of issue to proposal 

111 In boreal forests, some companies are 
managing old forest retention within the natural range of variability, retaining 18% as old forest, 
although age-class distributions can be more difficult to estimate in these ecosystems than on 
the rarely-disturbed coast112

Without an existing plan, the effects of the proposed harvest on the burned areas are 
unknown. In the southwest Yukon, fire and beetle disturbances create unique ecosystems. 
Planning to retain a sufficient amount at multiple scales (i.e. within a fire and over larger 
regions) to maintain ecological integrity would be prudent. The current proposal evaluates two 
large burns, and there are potential impacts of post-fire logging to biodiversity within those 
burns depending upon retention. At the regional scale, new burns may be targeted once 
biomass production has begun, potentially impacting regional populations of post-fire species, 
depending upon the burn rate, harvest rate and retention level. As a general principle, disturbed 
sites should not be viewed as being more “harvestable” than undisturbed old forest. 

. 

Forest structure provides the architecture of an ecosystem: large standing dead or live trees, 
large downed wood, horizontal and vertical heterogeneity. Natural disturbances provide pulses 
of death that increase structural heterogeneity. This structure, renewed by disturbance, 
supports an ecosystem’s processes and biodiversity. 

4.4.2. Stand-level Structure 

At the stand scale, retaining structure within managed forests is generally accepted to serve 
three functions: 1) enriching re-established forest stands with structural legacies, so that as 
stands age they acquire complex structures and begin to function as older stands sooner than 
they otherwise would; 2) maintaining (‘lifeboating’) species and processes that would otherwise 
be absent from early seral stands, keeping them in the area until conditions become more 
favourable; 3) enhancing landscape connectivity113.  
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As with landscape-level retention, evidence suggests that the amount retained is more 
important than the pattern. A review of studies in forests from North America and Europe found 
that retention below 20% has little value for structural enrichment or for lifeboating (insufficient 
studies exist to test connectivity)114.  Above 20%, immediate post-harvest survival of some 
forest taxa increases, non-linearly, with the amount of retention. Small, young trees have 
limited value although they can provide important foraging opportunities115. Reviews of boreal 
studies have found that retaining structure increases the presence of old-forest birds and 
mammals, but have not found consistent patterns by amount retained116. More evidence 
supports aggregated retention, though response varies by organism. In cutblocks in boreal 
forests, retained patches > 5 ha may be necessary to retain old forest bird species117. Because 
most field studies are short-term, knowledge about long-term effectiveness is severely 
lacking118

Ecosystem-based forest management aims to maintain ecosystem processes and biodiversity 
through retaining structure at all scales. In Fennoscandian boreal forests, some species are 
threatened, and in some cases extirpated, because of centuries of intensive forest management 
resulting in depletions in old forest structures.

.  

119

Natural disturbances create structural heterogeneity. Standing snags are important features of 
both fire and beetle disturbance events. In the boreal forest, unburned forests typically have 
many deciduous, but few coniferous, snags: hence conifer snags require disturbance for 
maintenance

  

120. Burn severity is heterogeneous over space. Even severe fires in boreal forests 
have patches of live residuals; larger fires have higher proportions of live residuals121. In the 
southwest Yukon, the slow decay rate means that dead trees remain as structure for many 
decades122. Post-disturbance logging can eliminate live residuals and snags unless retention is 
planned. Snags that are retained following post-disturbance logging are less likely to remain 
standing—a cumulative effect of double disturbance that limits the effectiveness of retention 
and potentially calls for higher retention levels.123 In BC, the chief forester has provided 
guidance for increased levels of stand-retention in post-beetle harvest.124 

The proposed harvest within the Haines Junction beetle outbreak area likely poses low risk to 
biodiversity. In combination with high levels of landscape retention, the CATT ILP calls for in-
stand retention of 25% in high-value wildlife areas that cover 80% of the forestry zone and 10% 
elsewhere. Increasing the diversity in retention levels could be beneficial to increase resilience.  

Importance of issue to proposal 

Without an existing plan, the effects of the proposed harvest on the burned areas are 
unknown.  

4.5. Access 
Roads have a variety of impacts on ecosystems. They increase direct mortality by collisions and 
by providing access for predators, including humans125. Traffic along roads with low roadside 
cover can have far-reaching impacts (e.g. some ungulates are disturbed within 400 m of roads). 
Roads can either facilitate or hinder movement of large and small animals.126 They are well 
documented avenues for the spread of invasive species127. Poorly located roads and/or poor 
culvert placement can alter hydrogeomorphic processes, stream ecosystems and fish survival.128 
Road building and skidding associated with post-disturbance logging can increase soil 
compaction and erosion129. 
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Some biologists consider impacts of roads to be greater for some species than the impact of 
habitat alteration. Grizzly bears are particularly sensitive to roads because of their low 
reproductive rates, road-associated mortality, and displacement from areas near roads.130 While 
adult males generally avoid road corridors, adult females with cubs tolerate high human 
presence along road corridors and can become habituated. These females are subject to 
increased mortality risk, potentially impacting population trends. The risk to grizzly bear 
mortality increases steeply with the first road into an area, then rises more gently until another 
threshold at 0.6 km/km2. 131  

A low volume of biomass per hectare leads to a high road density per volume harvested, 
increasing risk to biodiversity and potential increasing risk to hydrology. Large unroaded areas 
are considered an excellent indicator of large mammal populations, and open road density 
indicates potential risk. Effective deactivation of roads reduces impacts over time, but access 
control measures can be difficult to implement after people become accustomed to using 
resource roads. One of the burned sites is within the winter range of the Tatchun caribou 
herd

Importance of issue to proposal 

132

Providing a long-term biomass supply may increase road density. New roads may be built to 
access new burns to supply biomass over a longer time period.  Planning will be important to 
address potential cumulative impacts over time. 

; hence access control might be an important consideration. 
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5. Best practices for post-disturbance logging in boreal 
forest  

In any ecosystem, post-disturbance logging shares—at a minimum—many best practices with 
green-tree logging. Many authors have summarised forest management practices aimed to 
maintain ecological integrity133; these practices apply equally to post-disturbance management, 
and generally include such recommendations as reserving sufficiently large areas of all 
ecosystems to maintain function, retaining heterogeneity across scales, retaining structure 
within stands. Natural disturbance is well-accepted as a guide to resilient management, though 
climate change brings uncertainty to the approach134

Because of special conditions following stand-replacing natural disturbances, post-disturbance 
logging may have greater impact, and the best practices for green-tree logging may not be 
sufficient

. Resilience in the face of climate change 
calls for a diversity of approaches including potentially higher levels of retention. 

135

For post-disturbance logging, the following best practices have been described

. Post-disturbance logging impacts an ecosystem that has already been disturbed 
and may hence be more vulnerable.  

136: 

1. Honour pre-disturbance objectives. If ecological integrity was a priority for 
management pre-disturbance, natural disturbance should not alter that priority; yet 
disturbances have been used to change objectives from ecological to economic by 
allowing salvage where green-tree logging would not have been allowed at the same 
intensity

Planning 

137

2. Consider potential cumulative effects of multiple disturbances over time and space 
including other anthropogenic disturbances. The need for this step will likely increase 
with climate change as the frequency and intensity of fire and insect outbreaks both 
increase. In planning for cumulative effects, it is important to be proactive and plan in 
advance rather than responding to proposals individually. 

  

3. Manage for heterogeneity (e.g. structure and species composition) within and among 
stands to increase resilience to climate change138

4. Plan to address site-level concerns (e.g. vulnerable soils, advanced regeneration) 

. Traditional forest management 
increase homogeneity, unlike natural processes, and can increase probability of 
unexpected catastrophic change.  

5. At the landscape level, exclude post-disturbance logging from sufficient disturbed area 
to maintain desired functions. Within naturally disturbed areas, the following sites and 
ecosystems should be reserved; i.e. excluded from post-disturbance logging:  

Landscape-level Reserves 

a. Large representative ecosystems that are designed to maintain ecological 
processes and biodiversity 

b. Smaller areas with high ecological value (biodiversity hotspots including 
hydroriparian ecosystems, where the structure provided by dead wood is 
particularly important, and legacy-rich habitats) 

c. Rare ecosystems 
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d. Where disturbed ecosystems are rare (e.g. following fire suppression), leave 
disturbed stands unlogged 

e. Where recent human activity is limited, and hence the potential for natural 
recovery is strong  

f. Sensitive sites (hydrologically, steep, erodable) 

g. Unroaded areas 

h. Old-growth areas 

6. Retain undisturbed or partially disturbed patches within a disturbance. These patches 
are refugia for surviving organisms. Preferentially retain larger patches. 

Stand-level Retention 

7. Retain sufficient legacies within the logged area to maintain desired functions. Most 
jurisdictions have similar retention targets for post-disturbance harvest as from green 
harvest (e.g. retain average 7.5% in BC, although the Chief Forester has given 
recommendations for higher retention in beetle-outbreak areas). In general, higher 
retention levels are necessary than for green-tree logging to allow attrition and collapse. 
Levels below 20% provide few benefits. In particular, leave 

a. Large live trees 

b. Large dead snags 

c. Damaged trees 

d. Downed wood139

e. Advanced regeneration 

 

8. Match the profile of the pre-harvested stand for structural elements, or bias retention 
towards larger structures as longer-lasting legacies. 

9. Minimise ground disturbance after fires because of increased soil vulnerability 
Management Operations 

10. Schedule timing to minimise effects on natural recovery 

a. Seasonally, harvest in winter to minimise impacts on regeneration 

b. Across years, delay to allow post-burn recovery and communities 

11. Avoid interfering with natural recovery: replanting can impede recovery in some forest 
types by introducing invasive weeds, increasing homogeneity, and increasing risks 
associated with dense even-aged dense stands (fire, insect, pathogens) 

12. Decommission roads after post-disturbance logging 
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6. Appendix: Notes on costs 

Biomass harvesting includes felling and skidding costs, but excludes limbing and bucking costs 
that make up about 20% ( $4.00/m3 out of $19.90)

Tree to truck 

140 to 33% ($2.23 out of $6.69) 141

Estimates of tree to truck costs (including bucking and delimbing) are very variable among 
studies and among regions. Kumar

 of tree to 
truck costs. 

142 present estimates from several studies that, range from 
$6.69 (assuming merchantable tree volume of 0.5m3/tree) to $16.65. Estimates vary regionally: 
$13/m3 in Alberta; $17/m3 in BC; $19/m3 in the prairies; $20/m3 in Eastern Canada; $24/m3 in 
Yukon143. Stennes and McBeath144 also estimate $17/m3 145 for BC. JC Bartlett and associates 
Ltd.146 estimate $20/m3 to $25/m3 for hand-felling in good stands in the Northwest Territories. 

Chipping costs are highly dependent on specific equipment and the scale of the operation. 
Roadside chipping uses small to medium chipping machines because of the limited availability of 
biomass at a given site

Chipping 

147. High capacity chippers located at the energy plant reduce chipping 
costs. The cost of chipping roadside residuals (discarded limbs and sections of logs; ~25% of 
sawlog volume) depends on stand density and ranges from 6.49/m3 to $9.80/m3 for stands with 
> 250m3/ha and < 150 m3/ha respectively148. Similarly Kumar et al.149 summarize a range of 
chipping costs from the literature, from $6/m3 to $11/m3 and estimate costs of $5/m3 for a large 
scale operation (e.g., harvesting 2 or 3 million m3/yr). Thakur150 summarizes a range for piling 
and chipping cost (in the woods) from $5/m3 to $12/m3. Chipping at the energy facility could be 
relatively cheaper ($4/m3)151

In the woods, chips may flow directly into waiting chip trucks or be stored in piles for later 
loading

. Thakur estimated chipping costs of $5.30/m3 at the roadside and 
$4.49/m3 at the energy plant, assuming full equipment utilization (i.e., an optimistic 
assumption). 

152. 

A logging truck costs about $150/hr
Transport 

153 or about ~$2/km given an average travel speed of about 
75 to 80 Km an hour154. Loading and unloading takes about an hour (Transport Canada 2005), 
increasing costs to about $2.42/km on the 360 km round trip from Haines Junction cutblocks to 
Whitehorse155. Similarly, a B-train van (i.e., used as a chip truck) costs about $2.39/km (including 
typical loading/unloading time for an average 320 km round trip distance and 160,000 km/yr156. 
A rate of $2.40/km translates to about $8/m3 for a 60 m3 load going 100 km to a facility157. 
Winter hauling increases costs 5.9% (included in estimates) and hauling on gravel reduces speed 
by about 8 km/hr and increases repair and tire costs158. Loading/unloading time (about an hour) 
is typically included in transport costs159

Given a fixed rate per kilometre, the amount of weight or volume (whichever is limiting) that a 
truck can haul determines the cost per unit of biomass. Super b-train chip trucks probably have 
similar capacities and costs as logging trucks

, thus shorter hauls cost more per kilometre because 
loading/unloading costs comprise a higher proportion. 

160. Some chip trucks haul less solid biomass (e.g., 
21.5 ODT)161 than logging trucks (e.g., 30.4 ODT162) because chips are less dense than stacked 
logs and hence chip trucks are limited by volume163

Tampier et al.

.  
164 estimate that loading/unloading costs $4/m3 for logs. Thakur165 uses an 

estimate about $2.25/m3 for loading unloading bulk material. 
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